[1] VAN ACKER V, WITLOX F. Commuting trips within tours: how is commuting related to land use?[J]. Transportation, 2010, 38(3): 465-486.
[2] LIU Y, WANG F, XIAO Y, et al. Urban land uses and traffic ‘source-sink areas’: Evidence from GPSenabled taxi data in Shanghai[J]. Landscape and Urban Planning, 2012, 106(1): 73-87.
[3] PAN G, QI G, WU Z, et al. Land- use classification using taxi GPS traces[J]. Ieee T Intell Transp, 2013, 14 (1): 113-123.
[4] TOOLE J L, ULM M, GONZáLEZ M C, et al. Inferring land use from mobile phone activity[C]// Proceedings of the ACM SIGKDD International Workshop on Urban Computing, Beijing: Association for Computing Machinery, 2012: 1-8.
[5] ZHAN X, UKKUSURI S V, ZHU F. Inferring urban land use using large-scale social media check-in data[J]. Networks and Spatial Economics, 2014, 14: 647-667.
[6] ZHAO J, FAN W, ZHAI X. Identification of land- use characteristics using bicycle sharing data: A deep learning approach[J]. Journal of Transport Geography, 2020, 82(102562).
[7] MA X, ZHUANG D, HE Z, et al. Learning traffic as images: A deep convolutional neural network for largescale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818-834.
[8] 赵晋. 基于精细化人群分类的公交路径选择模型研究 [D]. 北京: 北京工业大学, 2017. [ZAHO J. Research on public transport route selection model based on meticulous population classification[D]. Beijing: Beijing University of Technology, 2017.]
[9] SPÄRCK JONES K. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of Documentation, 2004, 60(5): 493-502.
[10] YUAN J, ZHENG Y, XIE X. Discovering regions of different functions in a city using human mobility and POIs[C]// Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing: Association for Computing Machinery, 2012: 186-194. |