[1] 白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息, 2017, 17(1): 127- 135. [BAI L. Urban rail transit normal and abnormal short- term passenger flow forecasting method[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 127-135.]
[2] 郇宁, 谢俏, 叶红霞, 等. 基于改进KNN算法的城轨进站客流实时预测[J]. 交通运输系统工程与信息, 2018, 18(5): 121-128. [HUAN N, XIE Q, YE H X, et al. Realtime forecasting of urban rail transit ridership at the station level based on improved KNN algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 121-128.]
[3] TANG Q C, YANG M N, YANG Y. ST- LSTM: A deep learning approach combined spatio-temporal features for short- term forecast in rail transit[J]. Journal of Advanced Transportation, 2019, 2019(6): 1-8.
[4] MA X L, ZHANG J Y, DU B W, et al. Parallel architecture of convolutional bi- directional LSTM neural networks for network- wide metro ridership prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(6): 2278-2288.
[5] LIU Y, LIU Z Y, JIA R. DeepPF: A deep learning based architecture for metro passenger flow prediction[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 18-34.
[6] ZHANG J L, CHEN F, CUI Z Y, et al. Deep learning architecture for short-term passenger flow forecasting in urban rail transit[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, DOI: 10.1109/ TITS.2020.3000761.
[7] ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction [C]. Proceedings of the Thirty- First AAAI Conference on Artificial Intelligence, San Francisco, 2017: 1655- 1661.
[8] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 2016: 770-778.
[9] YU B, YIN H T, ZHU Z X. Spatio- temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]. Proceedings of the TwentySeventh International Joint Conference on Artificial Intelligence, Stockholm, 2018: 3634-3640.
[10] WU Y K, TAN H C. Short-term traffic flow forecasting with spatial- temporal correlation in a hybrid deep learning framework[J/OL]. (2016- 12- 3) [2020- 4- 8]. https://arxiv.org/abs/1612.01022. |