[1] BIAN C Z, YUAN C W, KUANG W B, et al. Evaluation, classification, and influential factors analysis of traffic congestion in Chinese cities using the online map data[J]. Mathematical Problems in Engineering, 2016, 2016 (PT.10):1-10.
[2] 许彬. 基于分辨矩阵的交通拥堵关键影响因素提取及解析[J]. 长安大学学报(自然科学版), 2012, 32(5): 91- 96, 106. [XU B. Extraction and analysis of critical influencing factors of traffic congestion based on discrimated matrix[J]. Journal of Chang'an University (Natural Science Edition), 2012, 32(5): 91-96, 106.]
[3] 花玲玲, 郑伟. 基于复杂网络理论的铁路事故致因分析[J]. 中国安全科学学报, 2019, 29(S1): 114-119. [HUA L L, ZHENG W. Research on causation of railway accidents based on complex network theory[J]. China Safety Science Journal, 2019, 29(S1): 114-119.]
[4] WU J, GAO Z, SUN H. Simulation of traffic congestion with SIR model [J]. Modern Physics Letters B, 2004, 18 (30): 1537-1542.
[5] ZHANG G, JIA H, YANG L, et al. Research on a model of node and path selection for traffic network congestion evacuation based on complex network theory[J]. IEEE Access, 2019, 8: 7506-7517.
[6] 雷凯, 朱晓宁, 侯键菲. 多式联运网络风险传播建模与仿真[J]. 交通运输系统工程与信息, 2016, 16(3): 21- 27. [LEI K, ZHU X N, HOU J F. Modeling and simulation of risk communication in multimodal transportation networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(3): 21-27.]
[7] SOLÉ-RIBALTA A, GÓMEZ S, ARENAS A. A model to identify urban traffic congestion hotspots in complex networks[J]. Royal Society Open Science, 2016, 3(10): 160098.
[8] 胡立伟, 杨锦青, 何越人, 等. 基于改进BP神经网络的城市交通拥塞环境下车辆运行风险识别研究[J]. 公路交通科技, 2019, 36(10): 105-113. [HU L W, YANG J Q, HE Y R, et al. Study on vehicle operational risk identification in urban traffic congestion based on improved BP neural network[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (10): 105-113.]
[9] 陈紫扬, 张月霞. 节点影响力下的改进 SIR 传播模型 [J]. 电讯技术, 2019, 59(12): 1451-1457. [CHEN Z Y, ZHANG Y X. An improved SIR propagation model based on node influence[J]. Telecommunication Engineering, 2019, 59(12): 1451-1457.] |