[1] ZHOU Y J, WANG L L, ZHONG R, et al. A markov chain based demand prediction model for stations in bike sharing systems[J]. Mathematical Problems in Engineering, 2018, 2018: 1-8.
[2] KALTENBRUNNER A, MEZA R, GRIVOLLA J, et al. Urban cycles and mobility patterns: Exploring and predicting trends in a bicycle-based public transport system[J]. Pervasive and Mobile Computing, 2010, 6(4): 455-466.
[3] 陈思浓. 公共自行车需求多因素预测模型与调度算法研究[D]. 杭州: 浙江大学, 2018. [CHEN S N. Research on forecasting model and scheduling algorithm of public bicycle demand[D]. Hangzhou: Zhejiang University, 2018.]
[4] 周敏. BP神经网络在公共自行车站点需求预测中的应用研究[D]. 苏州:苏州科技大学, 2018. [ZHOU M. Application research of BP neural network in demand forecast of public bicycle station[D]. Suzhou: Suzhou University of Science and Technology, 2018.]
[5] 冯超. K-means聚类算法的研究[D]. 大连: 大连理工大学, 2007. [FENG C. Research of K- means clustering algorithm[D]. Dalian: Dalian University of Technology, 2007.]
[6] HARTIGAN J A, WONG M A. A K- means clustering algorithm[J]. Applied Stats, 1979, 28(1): 455-466 .
[7] CHEN H R, CHEN H, LIU Z Z, et al. Analysis of factors affecting the severity of automated vehicle crashes using XGBoost model combining POI data[J]. Journal of Advanced Transportation, 2020, 2020: 1-12.
[8] 赵卫锋, 李清泉, 李必军. 利用城市POI数据提取分层地标[J]. 遥感学报, 2011, 15(5): 973-988. [ZHAO W F, LI Q Q, LI B J. Extracting hierarchical landmarks from urban POI data[J]. Journal of Remote Sensing, 2011, 15 (5): 973-988.]
[9] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. |