交通运输系统工程与信息 ›› 2024, Vol. 24 ›› Issue (3): 213-220.DOI: 10.16097/j.cnki.1009-6744.2024.03.021

• 系统工程理论与方法 • 上一篇    下一篇

多源数据融合驱动的城市快速路交通状态划分

谷远利* 1,杜恒1,陆文琦2   

  1. 1. 北京交通大学,综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044; 2. 香港科技大学,土木与环境工程系,中国 香港
  • 收稿日期:2024-01-11 修回日期:2024-04-17 接受日期:2024-04-29 出版日期:2024-06-25 发布日期:2024-06-24
  • 作者简介:谷远利(1973- ),男,辽宁海城人,教授,博士
  • 基金资助:
    国家自然科学基金(41771478);北京市科技计划项目(Z121100000312101)

Traffic State Division of Urban Expressway Driven by Multi-source Data Fusion

GU Yuanli* 1 ,DU Heng1 , LU Wenqi2   

  1. 1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China; 2. Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
  • Received:2024-01-11 Revised:2024-04-17 Accepted:2024-04-29 Online:2024-06-25 Published:2024-06-24
  • Supported by:
    National Natural Science Foundation of China (41771478);Beijing Municipal Science and Technology Project (Z121100000312101)

摘要: 为提升交通状态划分效果,本文提出一种基于负激励项的改进模糊 C 均值聚类(BNITFCM)交通状态划分模型。该模型在原有FCM(Fuzzy C-Means)模型基础上考虑了交通流样本点权重以及交通流参数权重对聚类效果的影响,并引入隶属度负激励项、交通流权重负激励项、交通流样本点权重负激励项使聚类结果呈现类内高耦合、类间低耦合的特性。在此基础上,对样本点进行加权处理,用加权欧氏距离描述样本点之间的关系。通过拉格朗日乘子法得出模型的迭代公式并通过该迭代公式对模型进行求解。针对大多交通状态划分方法参数特征维度低的问题,本文以经过多源数据融合获得的速度、速度标准差、流量、密度和道路满载度构建高维特征输入。以数值仿真实验检验了BNIT-FCM模型在分类准确性方面的表现,结果表明,BNIT-FCM模型较FCM模型和改进模糊隶属度FCM模型(IFMD-FCM)的ARI(Adjusted Rand Index)分别提升了4.17%和 3.56%。以深圳市北环大道卡口和浮动车数据的交通流为研究对象,实验结果表明,BNIT-FCM模型对比FCM模型以及IFMD-FCM模型的轮廓系数分别提升了4.12%和4.07%;同时,BNIT-FCM模型采用多源融合数据的速度及其标准差比单独采用卡口数据和单独采用浮动车数据的速度及其标准差的轮廓系数分别提升了29.67%和54.13%。

关键词: 城市交通, 交通状态划分, 改进FCM聚类模型, 多源数据, 多维特征

Abstract: To enhance the effectiveness of traffic state division, this paper proposes an improved fuzzy C-means clustering model based on Negative Incentive Terms (BNIT-FCM). Building upon the original FCM model, the BNITFCM considers the impact of the weight of traffic flow sample points and traffic flow parameters on the clustering. It introduces negative membership incentives, traffic flow weight amplification incentives, and traffic flow sample point weight amplification incentives to foster high intra-class coherence and low inter-class coherence in clustering results. Furthermore, the model introduces weighted sample points and employs weighted Euclidean distance to depict sample point relationships. Iterative formulas are derived via the Lagrange multiplier method and solved iteratively. To address the issue of low dimensionality in most traffic state division methods, this paper constructs high- dimensional feature inputs using parameters such as speed, speed standard deviation, flow, density, and road capacity obtained through multi-source data fusion. The classification accuracy of the BNIT-FCM model is evaluated through numerical simulation experiments. Results demonstrate that compared to the FCM model and Improved Fuzzy Membership FCM model (IFMD-FCM), the ARI of the BNIT-FCM model improves by 4.17% and 3.56% respectively. Using traffic flow data from both bayonet and floating cars on the North Ring Road in Shenzhen, experimental findings reveal that the silhouette coefficients of the BNIT-FCM model improve by 4.12% and 4.07% respectively compared to the FCM model and IFMD-FCM model. Additionally, utilizing multi-source fusion data, the speed and standard deviation of the BNIT-FCM model exhibit increases of 29.67% and 54.13% respectively compared to using bayonet data and floating car data alone.

Key words: urban traffic, traffic state division, improved FCM cluster model, multi-source data, multidimensional characteristics

中图分类号: