交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (6): 175-184.DOI: 10.16097/j.cnki.1009-6744.2025.06.016

• 系统工程理论与方法 • 上一篇    下一篇

基于自动售检票数据的地铁换乘站换乘时间分析

刘晨辉*a,b ,陶梦鑫a   

  1. 湖南大学,a.土木工程学院;b.综合交通研究中心,长沙410082
  • 收稿日期:2025-09-17 修回日期:2025-10-09 接受日期:2025-10-16 出版日期:2025-12-25 发布日期:2025-12-24
  • 作者简介:刘晨辉(1987—),男,山东济宁人,教授,博士。
  • 基金资助:
    湖南省自然资源厅科技计划项目 (HBZ20240122);中央高校基本科研业务费专项资金(5311180)。

Exploration of Transfer Time at Metro Transfer Stations with Automatic Fare Collection Data

LIU Chenhui*a,b, TAO Mengxina   

  1. a. College of Civil Engineering; b. Transportation Research Center, Hunan University, Changsha 410082, China
  • Received:2025-09-17 Revised:2025-10-09 Accepted:2025-10-16 Online:2025-12-25 Published:2025-12-24
  • Supported by:
    Science and Technology Plan Project of the Department of Natural Resources of Hunan Province (HBZ20240122);Fundamental Research Funds for the Central Universities of Ministry of Education of China (5311180)。

摘要: 换乘是制约城市轨道交通系统服务水平的重要因素,而明确分析城市轨道交通换乘时间是制定有效提升策略的前提。以长沙市地铁为研究对象,基于历史1周的AFC(Automatic Fare Collection)数据,对换乘时间进行深入分析。首先,构建换乘次数受限的广度优先搜索算法,识别最短换乘路径,进一步分解乘客出行链时间结构,建立线性回归模型,采用最小二乘法估计参数,从而量化换乘时间;接着,从空间分布、时间变化和相对耗时这3个维度对换乘时间进行客观全面的分析。结果表明,长沙市地铁平均换乘时间为6.2 min,占总出行时间的17.6%,工作日换乘耗时高于休息日,且存在高峰时段换乘效率退化现象。空间分布上,不同换乘站点之间存在一定差异,进一步利用K-means算法进行聚类分析,7座通道换乘站点被识别为低效率站点。基于研究结果,提出采用物理结构优化、实时引导和互联互通等措施,提升地铁换乘效率。

关键词: 城市交通, 换乘时间, K-means聚类分析, 城市轨道交通, 自动售检票

Abstract: Transfer efficiency is a key factor affecting the service quality of urban rail transit systems, and analysis on transfer time is essential to develop effective improvement strategies. This study investigates the transfer time based on the Automated Fare Collection (AFC) data of Changsha Metro system in one week. A breadth-first search (BFS) algorithm with transfer-count constraints was developed to identify shortest transfer paths. Based on the identified trips, a linear regression model was constructed, and parameters were estimated by using the ordinary least squares (OLS) method to quantify transfer times. Transfer characteristics were analyzed from three perspectives: spatial distribution, temporal variation, and relative duration within the entire trip. The results show that the average transfer time in Changsha Metro is 6.2 minutes, accounting for 17.6% of the total travel time. Transfer times on weekdays are generally longer than that on weekends, with noticeable efficiency degradation during peak hours. In terms of spatial distribution, significant differences exist among transfer stations, and K-means clustering was further applied to classify stations by transfer performance. Seven transfer stations with passageway-type layouts were identified as low-efficiency nodes. Based on the findings, this paper proposes optimization strategies including structural improvements, real time passenger guidance, and inter-line interoperability to improve the transfer efficiency in metro system.

Key words: urban traffic, transfer time, K-means clustering analysis, urban rail transit, Automated Fare Collection (AFC)

中图分类号: