[1] 胡笳, 罗书源, 赖金涛, 等. 自动驾驶对交通运输系统规划的影响综述[J]. 交通运输系统工程与信息, 2021,
21(5): 52-65. [HU J, LUO S Y, LAI J T, et al. A review
of the impact of autonomous driving on transportation
planning[J]. Journal of Transportation Systems
Engineering and Information Technology, 2021, 21(5):
52-65.]
[2] 陈喜群. 网约共享出行研究综述[J]. 交通运输系统工
程与信息, 2021, 21(5): 77-90. [CHEN X Q. Review of
app-based ridesharing mobility research[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2021, 21(5): 77-90.]
[3] 姚晓锐, 王冠, 杨超. 未来城市自动驾驶共享汽车规模研究: 以上海为例[J]. 交通运输系统工程与信息,
2019, 19(6): 85- 91. [YAO X R, WANG G, YANG C.
Exploring fleet size of shared autonomous vehicles in
future city: A case study in Shanghai[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2019, 19(6): 85-91.]
[4] GUO H, CHEN Y, LIU Y. Shared autonomous vehicle
management considering competition with human-driven
private vehicles[J]. Transportation Research Part C:
Emerging Technologies, 2022, 136: 103547.
[5] DANDL F, HYLAND M, BOGENBERGER K, et al.
Evaluating the impact of spatio-temporal demand
forecast aggregation on the operational performance of
shared autonomous mobility fleets[J]. Transportation,
2019, 46(6): 1-22.
[6] FAGNANT D J, KOCKELMAN K M. The travel and
environmental implications of shared autonomous
vehicles, using agent-based model scenarios[J].
Transportation Research Part C: Emerging
Technologies, 2014, 40: 1-13.
[7] 姚荣涵, 梁亚林, 刘锴, 等. 考虑合乘的共享自动驾驶汽车选择行为实证分析[J]. 交通运输系统工程与信息, 2020, 20(1): 228-233. [YAO R H, LIANG Y L, LIU
K, et al. Empirical analysis of choice behavior for
shared autonomous vehicles with concern of ride-sharing
[J]. Journal of Transportation Systems Engineering and
Information Technology, 2020, 20(1): 228-233.]
[8] SEO T, ASAKURA Y. Multi-objective linear
optimization problem for strategic planning of shared
autonomous vehicle operation and infrastructure design
[J]. IEEE Transactions on Intelligent. Transportation
Systems, 2022, 23(4): 3816-3828.
[9] HYLAND M, MAHMASSANI H S. Dynamic autonomous
vehicle fleet operations: Optimization-based strategies to
assign AVs to immediate traveler demand requests[J].
Transportation Research Part C: Emerging Technologies,
2018, 92: 278-297.
[10] HÖRL S, RUCH C, BECKER F, et al. Fleet operational
policies for automated mobility: A simulation assessment
for Zurich[J]. Transportation Research Part C: Emerging
Technologies, 2019, 102: 20-31.
[11] MAO C, LIU Y, SHEN Z J. Dispatch of autonomous
vehicles for taxi services: A deep reinforcement learning
approach[J]. Transportation Research Part C: Emerging
Technologies, 2020, 115: 102626.
[12] KANG D, LEVIN M W. Maximum-stability dispatch
policy for shared autonomous vehicles[J]. Transportation
Research Part B: Methodology, 2021, 148: 132-151.
[13] AI-KANJ L, NASCIMENTO J, POWELL W B.
Approximate dynamic programming for planning a ridehailing system using autonomous fleets of electric
vehicles[J]. European Journal of Operational Research,
2020, 284: 1088-1106.
[14] POWELL W B, SIMAO H P, BOUZAIENE-AYARI B.
Approximate dynamic programming in transportation and
logistics: A unified framework[J]. Euro Journal on
Transportation & Logistics, 2012, 1(3): 237-284.
[15] CHEN Y, MAO B, BAI Y, et al. Optimal coordination of
last trains for maximum transfer accessibility with
heterogeneous walking time[J]. Journal of Advanced
Transportation, 2019, 2019: 9692024.
[16] Transportation Networks for Research Core Team.
Transportation networks for research [EB/OL]. (2021-
10- 22) [2021- 11- 09]. https: // github. com/ bstabler/
TransportationNetworks.
|