[1] 国家统计局. 第七次全国人口普查公报(第五号)[EB/
OL]. (2021-05-11) [2021-05-17]. http://www.stats.gov.
cn/ tjsj/ tjgb/ rkpcgb/ qgrkpcgb/ 202106/ t20210628_
1818824.html. [National Bureau of Statistics. The
seventh national census bulletin (No. 5) [EB/OL]. (2021-
05-11) [2021-05-17]. http: //www.stats.gov.cn/tjsj/tjgb/
rkpcgb/qgrkpcgb/202106/t20210628_1818824.html.]
[2] PÁEZ A, SCOTT D, POTOGLOU D, et al. Elderly
mobility: Demographic and spatial analysis of trip
making in the Hamilton CMA, Canada[J]. Urban Studies,
2007, 44(1): 123-146.
[3] CHENG L, CHEN X, YANG S, et al. Active travel foractive ageing in China: The role of built environment[J].
Journal of Transport Geography, 2019, 76: 142-152.
[4] FLINT E, CUMMINS S. Active commuting and obesity in
mid-life: Cross-sectional, observational evidence from
UK Biobank[J]. Lancet Diabetes & Endocrinology, 2016, 4(5): 420-435.
[5] ROE J, MONDSCHEIN A, NEALE C, et al. The urban
built environment, walking and mental health outcomes
among older adults: A pilot study[J]. Frontiers in Public
Health, 2020, 8: 575946.
[6] 刘吉祥, 肖龙珠, 王波. 建成环境对老年人活力出行的影响: 基于极端梯度提升决策树的研究[J]. 科技导报,
2021, 39: 102-111. [LIU J X, XIAO L Z, WANG B. Nonlinear effects of the built environment on elderly's active
travel: An extreme gradient boosting approach[J].
Science and Technology Review, 2021, 39: 102-111.]
[7] WU J, ZHAO C, LI C, et al. Non- linear relationships
between the built environment and walking frequency
among older adults in Zhongshan, China[J]. Frontiers in
Public Health, 2021, 9: 686144.
[8] YANG L, AO Y, KE J, et al. To walk or not to walk?
Examining non-linear effects of streetscape greenery on
walking propensity of older adults[J]. Journal of
Transport Geography, 2021, 94: 103099.
[9] WAYGOOD E O D, SUN Y, LETARTE L. Active travel
by built environment and lifecycle stage: Case study of
osaka metropolitan area[J]. International Journal of
Environmental Research and Public Health, 2015, 12
(12): 15900-15924.
[10] 乔珂, 赵鹏, 文佳星. 基于潜在类别模型的高铁旅客市场细分[J]. 交通运输系统工程与信息, 2017, 17(2): 28-
34. [QIAO K, ZHAO P, WEN J X. Passenger market
segmentation of high-speed railway based on latent class
model[J]. Journal of Transportation Systems Engineering
and Information Technology, 2017, 17(2): 28-34.]
[11] ABENOZA R F, CATS O, SUSILO Y O. Travel
satisfaction with public transport: Determinants, user
classes, regional disparities and their evolution[J].
Transportation Research Part A: Policy and Practice,
2017, 95: 64-84.
[12] 陈忠辉, 凌献尧, 冯心欣, 等. 基于模糊C均值聚类和随机森林的短时交通状态预测方法[J]. 电子与信息学报, 2018, 40(8): 1879-1886. [CHEN Z H, LING X Y,
FENG X X, et al. Short-term traffic state prediction
approach based on FCM and random forest[J]. Journal
of Electronics & Information Technology, 2018, 40(8):
1879-1886.]
[13] 吴文静, 景鹏, 贾洪飞, 等. 基于 K 均值聚类与随机森林算法的居民低碳出行意向数据挖掘[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 105-111. [WU W J,
JING P, JIA H F, et al. Low carbon travel intention
data mining for residents based on K-means clustering
and random forest algorithm[J]. Journal of South China
University of Technology (Natural Science Edition),
2019, 47(7): 105-111.]
[14] ZHANG Y, HAGHANI A. A gradient boosting method to
improve travel time prediction[J]. Transportation
Research Part C: Emerging Technologies, 2015, 58: 308-
324.
[15] BREIMAN L. Random forests[J]. Machine Learning,
2001, 45(1): 5-32.
[16] World Health Organization. Global recommendations on
physical activity for health[R]. Geneva: WHO Press,
2010.
[17] FAGHIH-IMANI A, ELURU N, EL-GENEIDY A M,
et al. How land-use and urban form impact bicycle flows:
Evidence from the bicycle- sharing system (BIXI)
in Montreal[J]. Journal of Transport Geography, 2014,
41: 306-314.
|