Journal of Transportation Systems Engineering and Information Technology ›› 2020, Vol. 20 ›› Issue (1): 183-189.

• Systems Engineering Theory and Methods • Previous Articles     Next Articles

Dangerous Driving Behavior Clustering Analysis for Hazardous Materials Transportation Based on Data Mining

WANG Hai-xing1,WANG Xiang-yu1,WANG Zhao-xian2, LI Xue-dong3   

  1. 1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China; 2. Jiaoke Transport Consultants Ltd., Beijing 100191, China; 3. Tiandi Science and Technology Co. Ltd., Beijing 100013, China
  • Received:2019-09-17 Revised:2019-10-23 Online:2020-02-25 Published:2020-03-02

基于数据挖掘的危险货物运输风险驾驶行为聚类分析

王海星*1,王翔宇1,王招贤2,李学东3   

  1. 1. 北京交通大学综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044; 2. 北京交科公路勘察设计研究院有限公司,北京 100191;3. 天地科技股份有限公司,北京 100013
  • 作者简介:王海星(1978-),男,辽宁人,副教授,博士.
  • 基金资助:

    国家重点研发计划/National Key Research and Development Program of China(2016YFE0201700).

Abstract:

In the process of hazardous materials transportation, bad driving behaviors such as too high speed and too fast speed change affect the stability of hazardous materials and vehicles, resulting in frequent accidents of hazardous materials transportation with serious consequences. In this paper 8 indicators for driving behavior evaluation were selected for quantitative analysis based on the massive data of the operating vehicle networked control system. Then by combining factor analysis and FCM algorithm, the risk driving behavior of the drivers of hazardous materials transport vehicles can be clustered scientifically. The results show that the driving behaviors of hazardous materials transport vehicles can be divided into three categories: acceleration & deceleration, speeding and variable speed driving,and the classification of the driver's safety level is achieved under each driving behavior. Therefore, it can identify the drivers with higher risks, which is of great reference significance to the transportation enterprises and industrial management departments of hazardous materials.

Key words: highway transportation, bad driving behavior, fuzzy C- means algorithm, hazardous materials transportation, factor analysis

摘要:

不良驾驶行为(车速过高,车速变化过快等)影响危险货物及车辆的稳定性,是导致危险货物运输事故频发且后果严重的重要原因. 基于对营运车辆联网联控系统海量数据的分析处理,根据其属性提取8 个驾驶行为量化指标,采用因子分析和模糊C均值聚类相结合的方法,实现对危险货物运输车辆驾驶员风险驾驶行为的科学聚类. 结果表明,危险货物运输车辆驾驶行为特征可有效聚为急加减速、超速驾驶和变速驾驶3 种行为,且在每种驾驶行为下实现对驾驶员安全等级的分类. 由此可以识别风险较高的驾驶员,这对危险货物运输企业和行业管理部门有重要参考意义.

关键词: 公路运输, 不良驾驶行为, 模糊C均值聚类算法, 危险货物运输, 因子分析

CLC Number: