交通运输系统工程与信息 ›› 2009, Vol. 9 ›› Issue (6): 154-160 .

• 系统工程理论与方法 • 上一篇    下一篇

紧急疏散情况下的公交车运行计划优化研究

宋瑞*1;何世伟1;章力2   

  1. 1.北京交通大学 交通运输学院,北京 100044; 2.美国密西西比州立大学 土木与环境工程学院,美国密西西比州 39762
  • 收稿日期:2009-03-11 修回日期:2009-07-04 出版日期:2009-12-25 发布日期:2009-12-25
  • 通讯作者: 宋瑞
  • 作者简介:宋瑞(1971-),女,河北人,教授,博士生导师.
  • 基金资助:

    国家863计划(2006AA11Z203);霍英东基金(104007)和北京交通大学校重点基金(2006XZ004)

Optimum Transit Operations during the Emergency Evacuations

SONG Rui1; HE Shi-wei1; ZHANG Li2   

  1. 1.School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; 2.Department of Civil and Environmental Engineering, Mississippi State University, MS 39762, U.S.A
  • Received:2009-03-11 Revised:2009-07-04 Online:2009-12-25 Published:2009-12-25
  • Contact: SONG Rui

摘要: 提出飓风等自然灾害条件下运用公交车进行居民紧急疏散的优化模型. 最优公交车疏散运行计划问题可转化为不确定性需求的选址—路径优化模型,目标函数是使总疏散时间最小. 选址—路径优化模型用于确定最有效的公交车集结点服务区域和将人员从受灾区域转移到指定避难所或安全地区的最优线路,并设计遗传算法、神经网络算法和爬山算法结合的混合启发式算法. 通过美国密西西比州格尔夫波特市的实际数据对所提出的模型进行验证. 实验结果表明,混合遗传算法在求解效果和效率上都优于传统的遗传算法.

关键词: 紧急疏散, 选址&mdash, 路径优化, 混合遗传算法, 公共交通, 不确定性优化

Abstract: This paper presents an optimization modeling technique to develop an evacuation plan for transit-dependent residents during in the event of natural disaster such as the emergency hurricane situation. The transit evacuation operation problem is formulated as a class of location-routing problem (LRP) with uncertain demands. The objective function is set to minimize the total evacuation time. The LRP problem identifies the optimal serving areas and transit vehicle routings to move evacuees from the flooding affected zone to designated shelters or safe destinations. The computational experience is presented on the application of hybrid genetic algorithms, artificial neural network, and hill climbing heuristic algorithms. Numerical experiments are conducted using the real survey data from Gulfport, MS, to illustrate the proposed modeling technique. Experimental results show that the hybrid GA performs well both in quality and efficiency than traditional GA.

Key words: emergency evacuation, location-routing problem, hybrid genetic algorithm, public transit, uncertain optimization

中图分类号: