[1] Boxgep, Jenkinsgm, Reinselgc. 时间序列分析——预测 与控制[M]. 北京: 人民邮电出版社, 2009. [Boxgep, Jenkinsgm, Reinselgc. Time series analysis—— Forecasting and control[M]. Beijing: People's Posts and Telecommunications Press, 2009.]
[2] Van D V, Dougherty M, Watson S. Combining kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C, 1996, 4(5) : 307-318.
[3] 张春辉, 宋瑞, 孙杨. 基于卡尔曼滤波的公交站点短时 客流预测[J]. 交通运输系统工程与信息, 2011,11(4): 154-159. [ZHANG C H, SONG R, SUN Y. Kalman filter-based short-term passenger flow forecasting on bus stop[J]. Journal of Transportation Systems Engineering and Information Technology, 2011,11(4): 154-159.]
[4] Yin H, Wong S C, Xu J, et al. Urban traffic flow prediction using a fuzzy-neural approach[J]. Transportation Research Part C, 2002(10): 85-98.
[5] 史其信, 郑为中. 道路网短期交通流预测方法比 较[J]. 交通运输工程学报, 2004, 4(4): 68-83. [SHI Q X, ZHENG W Z. Short-term traffic flow prediction methods comparison of road networks[J]. Journal of Traffic and Transportation Engineering, 2004, 4(4):68- 83.]
[6] 郝勇, 朱海燕. 基于客流n 日均量的地铁客流量的时 间序列分析[J]. 铁道运输与经济, 2009(10): 42-50. [HAO Y, ZHU H Y. Time-series analysis for metro passenger flow based on N days average volume[J]. Railway Transport and Economy, 2009(10): 42-50.]
[7] 郭大宁, 王磊, 陈成. 利用改进的ARIMA模型来预测 供应链中的需求[J]. 物流科技, 2004, 27(109): 60-62. [GUO D N,WANG L, CHEN C. Utilizing improved ARMA model for forcasting the demand in SCM[J]. Logistics Technology, 2004, 27(109): 60-62.] |