[1] CHEN Y D, ZHANG Y, HU J, et al. Pattern discovering of regional traffic status with self-organizing maps[C] // IEEE Intelligent Transportation Systems Conference, 2006, ITSC06, 2006: 647- 652.
[2] 赵志强. 基于GTM_TT 算法的城市区域交通状态分析[J]. 吉林大学学报(工学版),2009, 39(2):1-6.[ZHAO Z Q. Multi- dimensional regional traffic status analysis based on GTM- TT[J]. Journal of Jilin University (Engineering and Technology Edition), 2009,39(2):1-6.]
[3] QI C, HU J M, ZHANG Y, et al. Feature extraction of urban traffic network data based on local tangent space alignment[C] //Proceedings of 6th International Conference on Networked Computing, 2010:280-285.
[4] MA X L, YU H Y, WANG Y P, et al. Large- scale transportation network congestion evolution prediction using deep learning theory[J]. PLOS, 2015, DOI:10.1371/journal.pone.0119044
[5] CAI D, HE X F, ZHOU K, et al. Locality sensitive discriminant analysis[C]//Proceedings of 2007 International Joint Conference on Artificial Intelligence(IJCAI’07), Hyderabad, India, 2007, IJCAI- 07:708-713.
[6] 詹宇斌,殷建平,刘新旺,等. 流形学习中基于局部线性结构的自适应邻域选择[J]. 计算机研究与发展,2011, 48(4): 576-583. [ZHAN Y B, YIN J P, LIU X W,et al. Adaptive neighborhood selection based on local linearity for manifold learning[J]. Journal of Computer Research and Development, 2011, 48(4): 576-583. ]
[7] QU L, HU J M, ZHANG Y. A flow volumes data compression approach for traffic network based on principal component analysis[C] //Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference, Seattle, WA, USA: IEEE Omni press, 2007:125-130. |