交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (4): 139-145.

• 系统工程理论与方法 • 上一篇    下一篇

基于消除交叉冲突的疏散网络优化模型

赵星*,冯照雁,张小丽,李红伟   

  1. 河海大学土木与交通学院,南京210098
  • 收稿日期:2016-01-26 修回日期:2016-03-31 出版日期:2016-08-25 发布日期:2016-08-26
  • 作者简介:赵星(1986-),女,重庆人,博士.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(51408190,71501061).

Evacuation Network Optimization Based on Crossing Conflict Elimination

ZHAO Xing, FENG Zhao-yan, ZHANG Xiao-li, LI Hong-wei   

  1. School of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
  • Received:2016-01-26 Revised:2016-03-31 Online:2016-08-25 Published:2016-08-26

摘要:

针对疏散过程中交叉口易造成延误的问题,构建了基于消除交叉冲突的疏散网络优化双层模型,上层以总疏散时间最短为目标,对各车道转向进行最优设置,下层基于随机用户平衡原理进行路径选择,并运用遗传算法与逐次平均算法结合对该模型进行求解,最终实现疏散交通组织与路径规划的集成优化.本文基于简单实验对模型的收敛性与有效性进行校验,实验表明,运用本文所提出的模型能够有效求解消除交叉冲突下的疏散网络优化问题,且算法的收敛速度较快;基于实际案例证明,本文提出的疏散网络优化模型能通过对交叉口处部分转向的禁行,消除交叉冲突,避免其余转向交通流的中断, 从而提高疏散效率.

关键词: 城市交通, 应急疏散, 网络优化模型, 消除交叉冲突, 路径选择, 遗传算法

Abstract:

Aimed at the problem of evacuation delay at intersections under emergency, this paper constructs the two-layer optimization model for evacuation network based on crossing conflict elimination. The model takes a shortest total evacuation time as the objective to set the turning movement of each lane in the toplevel, and the route is allocated based on the Stochastic User Equilibrium principle in the lower- level. A combined algorithm with the genetic algorithm and MSA is designed to solve the model to realize the integrated optimization of evacuation traffic organization and route planning. Based on a simple experiment, this paper verifies the convergence and validity of the model, the calculation result of the experiment shows that the proposed model can solve the evacuation network optimization problem with crossing conflict elimination, and the algorithm designed in this paper has a fast convergence rate, while based on the actual case, it shows that by prohibiting parts of turning directions at intersection to eliminate crossing conflicts, the rest turning directions traffic flow could be uninterrupted, thus the evacuation efficiency could be improved.

Key words: urban traffic, emergency evacuation, network optimization model, crossing conflict elimination, route allocation, genetic algorithm

中图分类号: