[1] KIM D K. The study of reflecting regional characteristics in car insurance for reduction of traffic accidents[J]. Journal of Korean Society of Transportation, 2015, 33 (3): 223-236.
[2] 方守恩, 郭忠印, 杨轸. 公路交通事故多发位置鉴别新方法[J]. 交通运输工程学报,2001(1): 90-94. [FANG S E, GUO Z Y, YANG Z. A new identification method for accident prone location on highway[J]. Journal of Traffic and Transportation Engineering, 2001(1): 90-94.]
[3] MILLER TED R. Cost and functional consequences of U.S. roadway crashes[J]. Accidents Analysis and Prevent, 1993, 25(5): 593-607.
[4] XU C C, WANG W, LIU P. Identifying crash- prone traffic conditions under different weather on freeways[J]. Journal of Safety Research, 2013(46): 135-144.
[5] MANDLOI D, GUPTA R. Evaluation of accident black spots on roads using geographical information system (GIS)[C]. Map India Conference, Transportation, 2003.
[6] 颜峻, 袁宏永, 疏学明, 等. 用于犯罪空间聚集态研究的优化聚类算法[J]. 清华大学学报(自然科学版), 2009, 49(2): 176-178. [YAN J, YUAN H Y, SHU X M, et al. Optimal clustering algorithm for crime spatial aggregation states analysis[J]. Tsinghua University (Science & Technology), 2009, 49(2): 176-178.]
[7] 田沁, 巩玥, 亢孟军, 等. 国内主流在线地理编码服务质量评价[J]. 武汉大学学报(信息科学版), 2016, 41 (10): 1351-1358. [TIAN Q, GONG Y, KANG M J, et al. A comparative evaluation of online geocoding services in China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1351-1358.]
[8] ESTER M, KRIEGEL H P, SANDER J, et al. A densitybased algorithm for discovering clusters in large spatial databases with noise[C]. 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, 1996: 226-231.
[9] KUMAR K, MSHESH K, REDDY A, MOHAN R. A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method[J]. Pattern Recognition, 2016, 58: 39-48. |