[1]黄俊生,广晓平.航班延误恢复的建模与算法研究[J]. 交通运输系统工程与信息, 2018, 18(S1): 44-52.
[HUANG J S, GUANG X P. Study on modeling and
algorithm for delay recovery of flight[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2018, 18(S1): 44-52.]
[2]DING Y D, WANDELT S, WU G H, et al. Towards
efficient airline disruption recovery with reinforcement
learning[J]. Transportation Research Part E: Logistics
and Transportation Review, 2023, 179: 103295.
[3]ZENG W L, REN Y M, WEI W B, et al. A data-driven
flight schedule optimization model considering the
uncertainty of operational displacement[J]. Computers &
Operations Research, 2021, 133: 105328-105341.
[4]KAMMOUN M A, TURKI S, REZG N. Optimization of
flight
rescheduling problem under carbon tax[J].
Sustainability, 2020, 12(14): 1-19.
[5]MONTOYA J, RATHINAM S, WOOD Z. Multiobjective
departure runway scheduling using dynamic programming
[J]. IEEE Transactions on Intelligent Transportation
Systems, 2014, 15(1): 399-413.
[6]王建忠,丁小芹,王树伟.考虑潜在冲突的进离场航班协同排序[J]. 交通运输系统工程与信息,2023,23
(5): 312-320. [WANG J Z, DING X Q, WANG S W.
Collaborative sequencing of arrival and departure aircraft
considering
potential
conflicts[J].
Journal
of
Transportation Systems Engineering and Information
Technology, 2023, 23(5): 312-320.]
[7]
RIBEIRO N A, JACQUILLAT A, ANTUNES A P. A
large-scale neighborhood search approach to airport slot
allocation[J]. Transportation Science, 2019, 53(6): 1772-1797.
[8]JIANG H, ZENG W L, WEI W B, et al. A bilevel flight collaborative scheduling model with traffic scenario
adaptation: An arrival prior perspective[J]. Computers &
Operations Research, 2024, 161: 106431.
[9]陈可嘉,郭小清.自主取消航班下多目标时隙二次分配的改进食物链退火算法[J].工业工程与管理,2023,
28(1): 51-58. [CHEN K J, GUO X Q. Improved food
chain simulated annealing algorithm for multi-objective
slot secondary assignment under autonomous flight
cancellation[J]. Industrial Engineering and Management,
2023, 28(1): 51-58.]
[10] 张洪海,汤一文,许炎.TBO模式下终端区进场交通流优化模型与仿真分析[J].航空学报,2020,41(7): 325-338. [ZHANG H H, TANG Y W, XU Y. Optimizing
arrival traffic flow in airport terminal airspace under
trajectory based operations[J]. Acta Aeronautica et
Astronautica Sinica, 2020, 41(7): 325-338.]
[11] PAN Z X, WANG L, ZHENG J, et al. Learning-based
multipopulation evolutionary optimization for flexible job
shop scheduling problem with finite transportation
resources[J].
IEEE Transactions on Evolutionary
Computation, 2023, 27(6): 1590-1603.
[12] 王嵘冰,徐红艳,郭军.自适应的非支配排序遗传算法[J]. 控制与决策, 2018, 33(12): 2191-2196. [WANG R
B, XU H Y, GUO J. Adaptive non-dominated sorting
genetic algorithm[J]. Control and Decision, 2018, 33(12):
2191-2196.]
[13] LI P Z, XUE Q, ZHANG Z T, et al. Multi-objective
energy-efficient hybrid flow shop scheduling using Q
learning and GVNS driven NSGA-II[J]. Computers &
Operations Research, 2023, 159: 106360.
[14] 强生杰,黄青霞.新型客机座舱环境下的旅客登机效率研究[J]. 交通运输系统工程与信息,2020, 20(4):
209-215. [QIANG S J, HUANG Q X. Evaluation of
passenger boarding efficiency in a novel aircraft cabin
environment[J]. Journal of Transportation Systems
Engineering and Information Technology, 2020, 20(4):
209-215.]
[15] ZHANG Q F, LI H. MOEA/D: A multiobjective
evolutionary algorithm based on decomposition[J]. IEEE
Transactions on Evolutionary Computation, 2007, 11(6):
712-731.
[16] ASEFI H, JOLAI F, RABIEE M, et al. A hybrid NSGA-II
and VNS for solving a bi-objective no-wait flexible
flowshop scheduling problem[J]. International Journal of
Advanced Manufacturing Technology, 2014, 75(5/8):
1017-1033.
|