交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (6): 1-12.DOI: 10.16097/j.cnki.1009-6744.2025.06.001

• 综合交通运输体系论坛 •    下一篇

“双碳”背景下考虑需求不确定的多式联运网络设计优化

黄瑞,赵旭*,王婧贇   

  1. 大连海事大学,交通运输工程学院,辽宁大连116026
  • 收稿日期:2025-07-29 修回日期:2025-08-21 接受日期:2025-09-04 出版日期:2025-12-25 发布日期:2025-12-23
  • 作者简介:黄瑞(1997—),女,辽宁大连人,博士生。
  • 基金资助:
    国家社会科学基金应急管理体系建设研究专项(20VYJ024);国家社会科学基金项目重大研究专项项目(18VHQ005)。

Intermodal Transportation Network Design Optimization Considering Demand Uncertainty Under "Dual Carbon" Background

HUANG Rui, ZHAO Xu*,WANG Jingyun   

  1. College of Transportation Engineering, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Received:2025-07-29 Revised:2025-08-21 Accepted:2025-09-04 Online:2025-12-25 Published:2025-12-23
  • About author:zhaoxu@dlmu.edu.cn
  • Supported by:
    National Social Science Fund Emergency Management System Construction Research Project (20VYJ024);National Social Science Fund Major Program (18VHQ005)。

摘要: 在“双碳”目标持续推进与运输需求不确定性加剧背景下,研究多式联运网络设计优化问题。首先,构建以优化策略制定者为上层领导者,以托运人为下层跟随者的双层双目标优化模型,上层协同制定通过能力投资、低碳投资与补贴策略,实现总收益最大化与碳排放量最小化;下层基于广义运输成本求解用户均衡下的网络货流分配结果。接着,引入实物期权理论,采用几何布朗运动描述运输需求波动的随机过程,量化延迟优化的期权价值,确定优化策略的最优实施时机。针对模型特点,设计嵌套Frank-Wolfe的基于分解的多目标进化算法(MOEA/D)求解确定性模型,并结合最小二乘蒙特卡洛模拟识别优化策略实施时机。以西部陆海新通道沿线区域为例进行实证分析,结果表明:所提方法可统筹经济、低碳与运营效率等目标,实现单位运输成本降低16.58%,网络碳排放总量减少27.11%及总收益稳健增长5.41%;在需求不确定环境下,延期实施优化策略能够带来额外的期权价值,案例中,延期至第3期实施可使预期收益提升4.70%,碳排放总量降低5.03%。

关键词: 综合运输, 网络设计优化, 双层双目标优化模型, 多式联运网络, MOEA/D算法, 实物期权

Abstract: A central challenge in modern intermodal transportation planning is the simultaneous consideration of "Dual Carbon" goals and growing fluctuations in freight demand. To address this challenge, this study presents an optimization model for intermodal transport network design. First, a bi-level bi-objective optimization model is developed, with the strategy planner serving as the upper-level leader and shippers as the lower-level followers. The upper level jointly determines the capacity expansion investment, low-carbon investment, and subsidy policies, with the objective of maximizing total revenue while minimizing total carbon emissions. The lower layer solves the network cargo flow allocation under user equilibrium based on generalized transportation costs. Then, the theory of real options is introduced, and geometric Brownian motion is used to describe the stochastic process of transportation demand fluctuations. This enables the quantification of the option value of delayed optimization to determine the optimal timing for strategy implementation. Based on the model characteristics, a nested Frank Wolfe multi-objective evolutionary algorithm based on decomposition (MOEA/D) is designed to solve the deterministic model, combined with a least squares Monte Carlo simulation algorithm to get the optimal implementation timing. Empirical analysis along the Western Land-Sea New Corridor shows that the proposed method simultaneously balances the economic, low-carbon, and operational efficiency optimization goals, which results in a 16.58% decrease in unit transportation costs, a 27.11% decrease in total carbon emissions, and a robust 5.41% increase in total revenue. Under demand uncertainty, delaying the implementation of optimization strategies can generate additional option value. In the case study, delaying to the third period can increase expected revenue by 4.70% and reduce total carbon emissions by 5.03%.

Key words: integrated transportation, network design optimization, bi-level bi-objective optimization model, intermodal transportation network, multi-objective evolutionary algorithm based on decomposition (MOEA/D), real options

中图分类号: