交通运输系统工程与信息 ›› 2014, Vol. 14 ›› Issue (4): 154-159.

• 系统工程理论与方法 • 上一篇    下一篇

基于云—自组织神经网络的交通流预测模型

廖瑞辉,周晶*   

  1. 南京大学工程管理学院, 南京210093
  • 收稿日期:2013-11-26 修回日期:2014-04-18 出版日期:2014-08-25 发布日期:2014-09-16
  • 作者简介:廖瑞辉(1986- ),男,江西赣州人,博士生.
  • 基金资助:

    国家自然科学基金项目(71371094);国家自然科学基金青年基金项目(71201078);教育部人文社会科学研究青年 基金项目(12YJCZH017);江苏省自然科学基金项目(BK2012305).

Traffic Flow Forecasting Model Based on Cloud- Self- Organizing Neural Network

LIAO Rui-hui, ZHOU Jing   

  1. School of Management and Engineering , Nanjing University, Nanjing 210093, China
  • Received:2013-11-26 Revised:2014-04-18 Online:2014-08-25 Published:2014-09-16

摘要:

现代交通系统结构复杂,涉及的数据类型和数量众多,模糊性、随机性和不确 定性等因素的存在增加了数据分析过程中定性与定量综合集成的难度.本文对城市交通 流预测进行了研究,根据云模型和自组织神经网络的特点,构建了云—自组织神经网络 交通流预测模型.该预测模型运用云模型处理数据的模糊性和随机性问题的优势,提高了 自组织神经网络预测中学习样本数据的可靠性.通过对某城区的实际数据进行对比测算, 改进的预测模型比单纯使用自组织神经网络预测模型决定系数更高.结果表明,本文提出 的模型在交通流预测中提高了准确率,降低了预测泛化误差.

关键词: 城市交通, 数据预测, 云&mdash, 自组织神经网络, 交通流

Abstract:

Modern transportation systems have complex structure, and the existence of fuzzy, stochastic and uncertainty factors increase the difficulty of huge data involved in qualitative and quantitative integrated analysis. This paper developed the cloud neural network self-organization of traffic flow forecasting model based on the characteristics of cloud model and self-organizing neural network. Using cloud model fuzziness and randomness advantages, the paper proposed the prediction model that can improve the reliability of selforganizing neural network prediction learning sample data to process data problems. Through comparing two models to a city traffic flow forecasting with actual data, the paper found that the forecasting model has higher coefficient of determination than the only using of self-organizing neural network. The results show that the model proposed in the traffic flow forecasting can improve accuracy and reduce generalization error.

Key words: urban traffic, data forecasting, cloud-self-organizing neural network, traffic flow

中图分类号: