[1] Cassidy M J, Rudjanakanoknad J. Increasing the capacity of an isolated merge by metering its onramp[ J]. Transportation Research Part B: Methodological, 2005, 39(10): 896-913.
[2] Kang K P, Chang G L, Zou N. Optimal dynamic speedlimit control for highway work zone operations[J]. Transp. Res. Rec., 2004, 1877:77-84.
[3] Hegyi A, Bart S D, Hellendoorn J P. Optimal coordination of variable speed limits to suppress shock waves[J]. IEEE Trans. Intel. Transp. Syst., 2005, 6(1): 102-112.
[4] Zhang J, Chang H, Ioannou P A. A simple roadway control system for freeway traffic[C]. Minneapolis: Proc. American Control Conference ,2006: 4900–4905.
[5] Carlson R C, Papamichail I, Papageorgiou M. Local feedback-based mainstream traffic flow control on motorways using variable speed limits[C]. Madeira Island, Portugal: 13th International IEEE Annual Conference on Intelligent Transportation Systems, 2010.
[6] Sutton R S, Barto A G. Reinforcement learning-an Introduction. [M]. Cambridge, Massachusetts :MIT Press, 1998.
[7] 黄炳强. 强化学习方法及其应用研究[D]. 上海交通大学, 2007. [HUANG B Q. Research on the reinforcement learning method and application[D]. Shanghai Jiaotong University, 2007.]
[8] 虞靖靓. 基于Q 学习的Agent 智能决策的研究与实现[D].合肥工业大学, 2005. [YU J L. The research and implementation of agent intelligent decision based on Q learning[D]. HeFei University of Technology, 2005.]
[9] Rezaee K, Abdulhai B, Abdelgawad H. Self-learning adaptive ramp metering: analysis of design parameters on a test case in Toronto[C]. Washington, D.C:92th Annual Meeting of TRB, 2013.
[10] Veljanovska K, Bombol K M, Maher T. Reinforcement learning technique in multiple motorway access control strategy design[C]. Intelligent Transport Systems (ITS) Preliminary Communication .Mar. 19, 2010.
[11] Abdulhai B, Pringle R, Karakoulas G J. Reinforcement learning for true adaptive traffic signal control[J]. ASCE Journal of Transportation Engineering. 2003,129 (3): 278-285.
[12] Watkins C, Dayan P. Q-learning. machine learning[J]. 1992,8(3-4): 279-292.
[13] Daganzo C F. The cell transmission model-A dynamic representation of highway traffic consistent with the hydrodynamic theory[J]. Transp. Res. B: Meth., 1994,28 (4):269-287. |