[1] 张春辉,宋瑞. 基于卡尔曼滤波的公交站点短时客流 预测[J]. 交通运输系统工程与信息,2011, 11(4): 154- 159. [ZHANG C H, SONG R. Kalman filter- based short-term passenger flow forecasting on bus stop[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(4):154-159.]
[2] 徐瑞华. 城市轨道交通线路客流分布的实时预测 方法[J]. 同济大学学报(自然科学版),2011,39(6): 857-861. [XU R H. Real-time forecast of passenger flow distribution on urban rail transit line[J]. Journal of Tongji University (Natural Science), 2011, 39(6): 857-861.]
[3] 吴祥云,刘灿齐. 轨道交通客流量均衡分配模型与算 法[J]. 同济大学学报(自然科学版),2004,32(9): 1158- 1159. [WU X Y. Traffic equilibrium assignment model specially for urban railway network[J]. Journal of Tongji University (Natural Science), 2004, 32(9):1158-1159.]
[4] 刘剑锋,孙福亮,等. 城市轨道交通乘客路径选择模 型及算法[J]. 交通运输系统工程与信息,2009, 9(2): 85-90. [LIU J F, SUN F L, et al. Passenger flow route assignment model and algorithm for urban rail transit network[J]. Journal of Transportation Systems Engineering and Information Technology, 2009, 9(2):85- 90.]
[5] 马建军,胡思继. 网状线路列车运行图实验平台基础 理论的研究[J]. 北方交通大学学报,2002,26(05):12- 18. [MA J J, HU S J. Study on foundational theory of laboratorial platform for train working diagram based on railway network[J]. Journal of Northern Jiaotong University, 2002, 26(05):12-18.]
[6] 徐瑞华,罗钦,高鹏. 基于多路径的城市轨道交通网络客流分布模型及算法研究[J].铁道学报, 2009, 31 (2): 110-112. [XU R H, LUO Q, GAO P. Passenger flow distribution model and algorithm for urban rail transit network based on multi-route choice[J]. Journal of the China Railway Society, 2009, 31(2):110-112.]
[7] H Chen, X Yao. Multi objective neural network ensembles based on regularized negative correlation learning[J]. IEEE Trans. Knowl. Data Eng., 2010, 22 (12):1738-1751.
[8] H Dam, H Abbass, C Lokan. Neural- based learning classifier systems[J]. IEEE Trans. Knowl. Data Eng. 2008, 20, (1): 26-39.
[9] S Munder, D Gavrila. An experimental study on pedestrian classification[J]. IEEE Trans. Pattern Anal. Mach. Intel, 2006, 28(11): 1863-1868.
[10] Y Jin, B Sendhoff. Pareto-based multi objective machine learning: An overview and case studies[J]. IEEE Trans. Syst., Man, Cybern. C, Applicat. Rev, 2008, 38(3):397-415. |