交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (6): 94-99.

• 系统工程理论与方法 • 上一篇    下一篇

基于GRA 与SVM-mixed 的货运量预测方法

梁宁1,耿立艳*2, 4,张占福3,梁毅刚2   

  1. 1. 河北省高速公路廊坊北三县管理处,河北廊坊065000;2. 石家庄铁道大学经济管理学院,石家庄050043; 3. 石家庄铁道大学四方学院,石家庄051132;4. 曼彻斯特城市大学商学院,英国曼彻斯特M15 6BH
  • 收稿日期:2016-06-12 修回日期:2016-08-21 出版日期:2016-12-25 发布日期:2016-12-26
  • 作者简介:梁宁(1974-),男,河北石家庄人,高级工程师.
  • 基金资助:

    国家自然科学基金青年项目/ National Natural Science Foundation for Young Scholars of China(61503261);河北省交 通运输厅2015 年科技计划项目/ 2015 Science and Technology Project of Department of Transportation in Hebei Province ( Y- 2010024);河北省软科学研究计划项目/Soft Science Research Program of Hebei Province (15456106D);河北省高等学校青年拔 尖人才计划项目/ Young Talents Program of Higher School of Hebei Province (BJ2014097);河北省社会科学发展重点课题/ Key Project of Social Science Development of Hebei Province (2015020206);河北省软科学研究基地项目/Project of Soft Science Research Base in Hebei Province (12457206D-14);国家留学基金委(CSC)资助公派留学地方合作项目/Local Cooperation Project Funded by China Scholarship Council (CSC) (201608130165).

A Prediction Method of Railway Freight Volumes Using GRA and SVM-mixed

LIANG Ning1, GENG Li-yan2,4, ZHANG Zhan-fu3, LIANG Yi-gang2   

  1. 1. Langfang Beisanxian County Management Department, Hebei Province Expressway , Langfang 065000, China; 2. School of Economics and Management, ShijiazhuangTiedao University, Shijiazhuang 050043, China; 3. Sifang College, ShijiazhuangTiedao University, Shijiazhuang 051132, China; 4.Business School, Manchester Metropolitan University, Manchester,M15 6BH,UK
  • Received:2016-06-12 Revised:2016-08-21 Online:2016-12-25 Published:2016-12-26

摘要:

铁路货运量与其影响因素之间关系复杂,单一核函数支持向量机(SVM)难以 进行准确描述,而且各因素对铁路货运量的影响程度具有差异性,若忽略这种差异性,将 难以获得理想的铁路货运量预测结果.为此,本文提出一种基于灰色关联分析(GRA)与混 合核函数支持向量机(SVM-mixed)的铁路货运量预测方法.该方法采用灰色关联分析确 定各影响因素的权重,再将赋予权重的影响因素作为输入变量,构建多项式核函数与径 向基核函数线性组合的SVM-mixed 预测模型.针对SVM-mixed 参数难以确定问题,采用 果蝇优化算法(FOA)选择SVM-mixed 最优参数.基于中国铁路货运量的实例分析表明,该 方法可有效提高铁路货运量的预测精度,为准确预测铁路货运量提供了一种新途径.

关键词: 铁路运输, 货运量, 预测, 灰色关联分析, 混合核函数支持向量机

Abstract:

The relationship between railway freight volumes and its influence factors is complex. It is difficult for support vector machines with single kernel function (SVM) to describe the complex relationship. At the same time, the impact of the factors on railway freight volumes is different. If we ignored this difference, it would be difficult to obtain the desired predicting results of railway freight volumes. To solve these problems, this paper proposes a novel method for predicting railway freight volumes based on grey relational analysis (GRA) and SVM with mixed kernel function (SVM- mixed). The weights of influence factors of railway freight volume are determined by GRA. Being as the input variables, the influence factors with weights are used to construct SVM- mixed whose kernel function combined polynomial kernel with radial basis kernel. Fruit fly optimization algorithm (FOA) is adopted to adjust the parameters in SVM-mixed to solve the problem of parameters selection of SVM-mixed. The example analysis of China railway freight volumes shows that the proposed method can effectively enhance accuracy in forecasting railway freight volumes, which provides a new approach for the accurate forecasting of railway freight volumes.

Key words: railway transportation, freight volumes, prediction, grey relational analysis, SVM with mixed kernel function

中图分类号: