[1] 郭玉华,陈治亚,冯芬玲,等. 基于经济周期的铁路货 运量神经网络预测研究[J]. 铁道学报, 2010, 32(5): 1- 6. [GUO Y H, CHEN Z Y, FENG F L, et al. Railway freight volume forecasting of neural network based on economic cycles[J]. Journal of the China Railway Society, 2010, 32(5): 1-6.]
[2] VAPNIK V N. An overview of statistical learning theory[J]. IEEE Transactions on Neural Networks, 1999, l0(5): 988-999.
[3] 赵闯,刘凯,李电生. 支持向量机在货运量预测中的应 用研究[J]. 铁道学报, 2004, 26(4): 10-14. [ZHAO C, LIU K, LI D S. Research on application of support vector machine in freight volumes forecast[J]. Journal of the China Railway Society, 2004, 26(4): 10-14.]
[4] 唐奇,王红瑞,许新宜,等. 基于混合核函数SVM水文 时序模型及其应用[J]. 系统工程理论与实践, 2014, 34 (2): 521-529. [TANG Q, WANG H R, XU X Y, et al . Hydrological time series model based on SVM with mixed kernel function and its application[J]. Systems Engineering-Theory & Practice, 2014, 34(2): 521-529.]
[5] 刘思峰,谢乃明. 灰色系统理论及其应用(第七版)[M]. 北京:科学出版社, 2014. [LIU S F, XIE N M. Grey system theory and its applications (the seventh edition)[M]. Beijing: Science Press, 2014.]
[6] 耿立艳,张天伟,赵鹏. 基于灰色关联分析的LS-SVM 铁路货运量预测[J]. 铁道学报, 2012, 34(3): 1-6. [GENG L Y, ZHANG T W, ZHAO P. Forecast on railway freight volumes based on LS-SVM with grey correlation analysis[J]. Journal of the China Railway Society, 2012, 34(3): 1-6.]
[7] PAN W T. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26(1): 69-74.
[8] CHEN F F, TANG B P, SONG T, et al. Multi- fault diagnosis study on roller bearing based on multi-kernel support vector machine with chaotic particle swarm optimization[J]. Measurement, 2014(47): 576-590.
[9] 申卯兴,薛西锋,张小水. 灰色关联分析中分辨系数 的选取[J]. 空军工程大学学报(自然科学版), 2003, 4 (1): 68-70. [SHEN M X, XUE X F, ZHANG X S. Determination of discrimination coefficient in grey incidence analysis[J]. Journal of Air Force Engineering University (Natural Science Edition), 2003, 4(1): 68-70.] |