[1] MA Z, XING J, MESBAH M, et al. Predicting shortterm bus passenger demand using a pattern hybrid approach[J]. Transportation Research Part C: Emerging Technologies, 2014(39): 148-163.
[2] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
[3] GAN M, CHENG Y, LIU K, et al. Seasonal and trend time series forecasting based on a quasi-linear autoregressive model[J]. Applied Soft Computing, 2014 (24): 13-18.
[4] WEI Y, CHEN M C. Forecasting the short-term metro passenger flow with empirical mode decomposition and neural networks[J]. Transportation Research Part C: Emerging Technologies, 2012, 21(1): 148-162.
[5] GUO J, HUANG W, WILLIAMS B M. Adaptive Kalman filter approach for stochastic short-term traffic flow rate prediction and uncertainty quantification[J]. Transportation Research Part C, 2014(43): 50-64.
[6] CASTRONETO M, JEONG Y S, JEONG M K, et al. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions[J]. Expert Systems with Applications An International Journal, 2009, 36(3): 6164-6173.
[7] JIANG X, ZHANG L, CHEN X. Short-term forecasting of high-speed rail demand: A hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real- world applications in China[J]. Transportation Research Part C: Emerging Technologies, 2014(44): 110-127.
[8] CHEN R, LIANG C Y, HONG W C, et al. Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm[J]. Applied Soft Computing, 2015(26): 435-443.
[9] 白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息, 2017, 17(1): 128- 135. [BAI L. Urban rail transit normal and abnormal short- term passenger flow forecasting method[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(1): 128-135.]
[10] ZHENG W, LEE D H, SHI Q X, et al. Short- term freeway traffic flow prediction: Bayesian bombined neural network approach[J]. Journal of Transportation Engineering, 2011, 132(2): 114-121.
[11] 孙湘海, 刘潭秋. 基于神经网络和SARIMA组合模型的短期交通流预测[J]. 交通运输系统工程与信息, 2008, 8(5): 32- 37. [SUN X H, LIU T Q. Short- term traffic flow forecasting based on a hybrid neural network model and SARIMA model[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(5): 32-37.]
[12] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[13] HUANG G B, CHEN L. Enhanced random search based incremental extreme learning machine[J]. Neurocomputing, 2008, 71(16): 3640-3648.
[14] MA Z. Short term traffic flow prediction based on online sequential extreme learning machine[C]// 2016 IEEE 8th International Conference on Advanced Computational Intelligence(ACI). Chiang Mai, Thailand: IEEE, 2016: 143-149.
[15] QIANG S, CIYUN L, ZHAO S Y, et al. A hybrid shortterm traffic flow prediction model based on singular spectrum analysis and kernel extreme learning machine [J]. Plos One, 2016, 11(8): 1-25. |