[1] SUN H Y, LIU H, XIAO H, et al. Use of local linear regression model for short-term traffic forecasting[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1836(1): 143- 150.
[2] 龚勃文, 林赐云, 李静, 等. 基于核自组织映射—前馈神经网络的交通流短时预测[J]. 吉林大学学报(工学版), 2011, 41(4): 938-943. [GONG B W, LIN C Y, LI J, et al. Short- time traffic flow prediction based on KSOM_BP neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2011, 41(4): 938-943]
[3] N GARG, SK MANGAL, PK SAINI, et al. Comparison of ANN and analytical models in traffic noise modeling and predictions[J]. Acoustics Australia, 2015, 43(2): 1-11.
[4] ZHU J Z, CAO J X, ZHU Y. Traffic volume forecasting based on radial basis function neuralnetwork with the consideration of traffic flows at the adjacent intersections [J]. Transportation Research Part C, 2014, 47(2): 139- 154.
[5] YU B, WANG Y T, YAO J B, et al. A Comparison of the performance of ANN and SVM for the prediction of traffic accident duration[J]. Neural Network World, 2016, 26(3): 271-287.
[6] SUN Z Q, GEOFFREY FOX. Traffic flow forecasting based on combination of multidimensional scaling and SVM[J]. International Journal of Intelligent Transportation Systems Research, 2014, 12(1): 20-25.
[7] WANG J, SHI Q X. Short-term traffic speed forecasting hybrid model based on chaos-wavelet analysis-support vector machine theory[J]. Transportation Research Part C, 2013, 27(2): 219-232.
[8] 傅成红, 张阳. 基于参数优化的 SVR城市群交通需求预测方法[J]. 系统工程, 2016(2): 114-120. [FU C H, ZHANG Y. An improved SVR algorithm based on the nuclear parameter optimization for traffic demand forecasting of urban agglomeration[J]. System Engineering, 2016(2): 114-120.]
[9] CHEN B, POLATKAN GUNGOR, SAPIRO GUILLERMO. Deep learning with hierarchical convolutional factor analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1887-1901.
[10] VAPNIK V , GOLOWICH S E , SMOLA A. Support vector method for function approximation, regression estimation, and signal processing[J]. Advances in Neural Information Processing Systems, 1970(9): 281-287.
[11] FISCHER A, IGEL C. Training restricted Boltzmann machines: An introduction[J]. Pattern Recongination, 2014, 47(1): 25-39.
[12] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1880. |