交通运输系统工程与信息 ›› 2019, Vol. 19 ›› Issue (4): 155-163.

• 系统工程理论与方法 • 上一篇    下一篇

接驳轨道枢纽的混合式灵活公交服务优化研究

卢小林*1,潘述亮 2   

  1. 1. 山东建筑大学 交通工程学院,济南 250101;2. 济南全通信息科技有限公司,济南 250101
  • 收稿日期:2019-01-30 修回日期:2019-05-23 出版日期:2019-08-25 发布日期:2019-08-26
  • 作者简介:卢小林(1988-),女,山东冠县人,讲师.
  • 基金资助:

    山东建筑大学校内博士基金/ Ph.D. Programs Foundation of Shandong Jianzhu University(X18061Z0101).

An Optimization Method of Hybrid Flexible Feeder Transit Service to Rail Stations

LU Xiao-lin1, PAN Shu-liang2   

  1. 1. School of Traffic Engineering, Shandong Jianzhu University, Jinan 250101, China; 2. Jinan Quantong Technology and Information Ltd., Jinan 250101, China
  • Received:2019-01-30 Revised:2019-05-23 Online:2019-08-25 Published:2019-08-26

摘要:

为解决居民在轨道与小区间的出行难题,本文提出一种新型的混合式灵活公交接驳服务模式,构建了在轨道交通枢纽的客流吸引范围内灵活与固定接驳公交的协同运行机制. 在已知灵活乘客需求和车队规模的条件下,综合兼顾出行者与运营者的时间成本,以及同步考虑轨道线路和固定接驳公交线路发车计划,建立了混合式接驳公交系统线路和乘客接运计划优化模型,并采用基于重力模型的遗传算法进行求解,最后通过实例验证该模型的有效性和实用性.结果表明,该优化模型在能够有效减小车辆行驶距离和乘客出行时间的同时,提高了混合式接驳公交系统的乘客服务量,相比于单一的灵活型接驳公交系统目标结果更优.

关键词: 交通工程, 路径优化, 遗传算法, 混合式接驳公交, 协同调度

Abstract:

To solve the“last mile”problem faced by people that travels between rail line and community, this paper proposes a new hybrid flexible feeder model, and a new coordinate operation that integrates the traditional fixed-route feeder service with a demand-adaptive flexible feeder service in the passenger-attracting scope of rail stations. Given the passenger demands and fleet size, a route planning and scheduling model of hybrid flexible feeder service is developed with considering the operator cost, passenger cost and departure time of the rail line and fixed-route feeder service. A gravity-based genetic algorithm is given to solve the model rapidly and a case study illustrates the effectiveness and practicability of the proposed model. The results show that the new hybrid model can feeder more people to rail stations with lower operator cost and lower passenger cost. The hybrid flexible feeder service outperforms the single flexible feeder service.

Key words: traffic engineering, route optimize, genetic algorithm, hybrid flexible feeder transit, coordinates scheduling

中图分类号: