交通运输系统工程与信息 ›› 2012, Vol. 12 ›› Issue (4): 128-134.

• 系统工程理论与方法 • 上一篇    下一篇

铁路货车静载重发展变化的数据挖掘研究

刘智丽*1,3,周熙霖2,方琪根2   

  1. 1.北京交通大学 城市交通复杂系统理论与技术教育部重点实验室,北京 100044; 2.中铁第四勘察设计院集团有限公司,武汉 430063;3.北京交通大学 中国综合交通研究中心,北京 100044
  • 收稿日期:2012-03-12 修回日期:2012-05-11 出版日期:2012-08-25 发布日期:2012-09-07
  • 作者简介:刘智丽(1977-),女,河北吴桥人,讲师.
  • 基金资助:

    国家自然科学基金(71131001);中央高校基本科研业务费专项资金资助(2011JBM251);青年骨干教师出国研修资助(2010709521).

Data Mining on Index of Static Load of Freight Cars

LIU Zhi-li 1,3,ZHOU Xi-lin2, FANG Qi-gen2   

  1. 1. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology,  Beijing Jiaotong University, Beijing 100044, China; 2. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China; 3. Integrated Transportation Research Center of China, Beijing Jiaotong University, Beijing 100044, China
  • Received:2012-03-12 Revised:2012-05-11 Online:2012-08-25 Published:2012-09-07

摘要:

铁路货车静载重是衡量货车运用效率的一项重要指标,在线路设计中也是预测静载重系数的重要依据.在对货车静载重指标数据结构进行梳理的基础上,采用K-medorids聚类算法进行数据挖掘,发现铁路局静载重水平具有明显的分级特征,而且各个铁路局在静载重分级中的位置相对稳定.通过因素分析发现静载重不同的货物品类发送比例的差异是引起局间静载重差异的主要影响因素.数据挖掘结果表明,在进行车流折算时区域间的静载重差异不应忽视,宜采用分区域选取静载重系数的方法.该研究成果对于指导铁路货车静载重系数预测具有重要意义.

关键词: 铁路运输, 货车静载重, 聚类算法, 指标因素分析

Abstract:

Static load of freight vehicles is one of the important indices to evaluate the efficiency of railway wagon usage, as well an important basis for predicting coefficient of static load in railway line design. Based on sorting out the data structure of static load, clustering algorithm of Kmedorids is employed for data mining to find the significant and relatively stable classification characteristics between static load of railway administrations. It is different delivery proportions of heavy goods that are indicated by index factor analysis to cause the static load classification of railway administrations. The datamining also indicates the differences of static load between different grading railway administrations which cannot be ignored, therefore determining the coefficient of static load in railway design based on divided region is recommended.

Key words: railway transportation, static load of freight cars, clustering algorithm, index factor analysis

中图分类号: