交通运输系统工程与信息 ›› 2013, Vol. 13 ›› Issue (4): 76-83.

• 智能交通系统与信息技术 • 上一篇    下一篇

基于后悔理论的交通信息感知价值

闫祯祯a,刘锴*a,王晓光b   

  1. 大连理工大学 a.交通运输学院; b.数学科学学院,辽宁 大连 116024
  • 收稿日期:2013-01-21 修回日期:2013-04-01 出版日期:2013-08-26 发布日期:2013-09-05
  • 作者简介:闫祯祯(1988-),女,山东临沂人,硕士生.
  • 基金资助:

    国家自然科学青年基金(51008050);中央高校基本科研业务费专项资金项目(DUT12ZD203).

Perceived Traffic Information Value Based on Regret Theory

YAN Zhen-zhena, LIU Kaia, WANG Xiao-guangb   

  1. a. School of Transportation & Logistics;b. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2013-01-21 Revised:2013-04-01 Online:2013-08-26 Published:2013-09-05

摘要:

为了衡量出行者在比较交通信息行为和规避风险决策模式下的交通信息感知价值,构建了获取信息前后基于期望后悔效用差别的交通信息感知价值模型.考虑通勤出行者在路径选择时可能遇到的不确定因素,应用贝叶斯更新方法计算出行者获得交通信息后对路况认知的提高程度,讨论了通勤者仅有两条候选路径,且对路径的熟悉程度均为90%、交通信息准确性达到95%时,两条路径在不同路况组合情况下的交通信息感知价值.结果表明,应用后悔理论和数值模拟法,可以全面了解两条路径在各种不同路况组合下,通勤者获取信息后的路径选择和信息感知价值的变化情况.

关键词: 智能交通, 交通信息价值, 期望后悔效用, 通勤者, 贝叶斯更新

Abstract:

Considering the differences of expected regrets with and without traveler information, this paper proposes explores the perceived value of traffic information, which plays a crucial role to assist commuters to make better route choices under risk averse decision pattern. It analyzes a wide range of uncertain factors during route choices, and then measures the improved traffic cognition with traffic information obtained, in which the Bayesian updating method is adopted. A scenario with two routes under different combinative road conditions is used to illustrate the perceived value of traffic information. The commuters’ familiar degrees of the two routes are assumed to be 90%, and the reliability of traffic information is set to be constant 95%. The simulation results indicate that the proposed model can comprehensively depict the changes of traveler’s route choice behavior and the perceived traffic information values under different combinative route conditions.

Key words: intelligent transportation, traffic information value, expected regrets, commuter, Bayesian updating

中图分类号: