交通运输系统工程与信息 ›› 2021, Vol. 21 ›› Issue (1): 196-200.

• 系统工程理论与方法 • 上一篇    下一篇

基于随机森林的电动自行车骑行者事故伤害程度影响因素分析

李英帅*1,张旭2,王卫杰1,居潇凡1   

  1. 1. 南京工业大学,交通运输工程学院,南京 211816;2. 重庆交通大学,交通运输学院,重庆 400074
  • 收稿日期:2020-07-29 修回日期:2020-09-22 出版日期:2021-02-25 发布日期:2021-02-25
  • 作者简介:李英帅(1985- ),男,山东临沂人,讲师,博士。
  • 基金资助:

    道路交通安全公安部重点实验室开放课题/Open Project of the Key Laboratory of Road Traffic Safety Ministry of Public Security(2017ZDSYSKFKT01);南京工业大学青年教师科研启动基金/High Level Introduction of Talent Research Start-up Fund by Nanjing Tech University(3827400205)。

Factors Affecting Electric Bicycle Rider Injury in Accident Based on Random Forest Model

LI Ying-shuai*1, ZHANG Xu2, WANG Wei-jie1, JU Xiao-fan1   

  1. 1. School of Transportation Engineering, Nanjing Tech University, Nanjing 211816, China; 2. College of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2020-07-29 Revised:2020-09-22 Online:2021-02-25 Published:2021-02-25

摘要:

为研究电动自行车道路交通事故对骑行者伤害程度影响因素的重要性排序,分析电动自行车骑行者事故伤害程度的影响因素。收集某市2013-2015年电动自行车交通事故数据,对其进行描述性统计分析,从中选出与交通事故严重程度相关的22个影响因素。利用随机森林模型对电动自行车骑行者受伤严重程度进行预测,并对相关因素的重要程度进行排序。研究表明,影响电动自行车骑行者受伤严重程度的最主要因素依次为车辆间事故类型、受伤部位、道路物理隔离类型等。针对交通事故相关因素提出改进建议,研究结论可为电动自行车事故预防提供决策参考。

关键词: 交通工程, 影响因素, 随机森林, 电动自行车, 事故伤害程度

Abstract:

This study analyzed the crucial factors that affect the injury degree of electric bicycle riders in the accident and ranked the factors based on their significance. The study collected electric bicycle traffic accident data in a city from 2013 to 2015, and then performed the descriptive statistical analysis. 22 factors related to the severity of traffic accidents were selected for analysis. The random forest model was used to predict the severity of electric bicycle rider injuries, and then rank the significance of the impact factors. The result indicates that the most significant factors affecting the severity of electric bicycle rider injuries in the accident are as follows: the type of accident, the injury is on which part of the body, and the separation type on the road, etc. The study also puts forward suggestions to improve bicycle rider's safety in terms of related factors, which provide reference for prevention of electric bicycle accident and relevant decision-makings in the safety management.

Key words: traffic engineering, impact factors, random forest, electric bicycles, accident injury degree

中图分类号: