交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (3): 132-141.DOI: 10.16097/j.cnki.1009-6744.2025.03.012

• 智能交通系统与信息技术 • 上一篇    下一篇

行为模式时空动态超图聚类的公共交通异常团体检测

赵霞1,李之红*1,刘剑锋2,杨静1,吴梦琳1,秦伊萌1   

  1. 1. 北京建筑大学,通用航空技术北京实验室,北京102616;2.北京城建交通设计研究院有限公司,北京100050
  • 收稿日期:2024-12-18 修回日期:2025-01-15 接受日期:2025-02-11 出版日期:2025-06-25 发布日期:2025-06-20
  • 作者简介:赵霞(1987—),女,江西鹰潭人,副教授,博士。
  • 基金资助:
    国家自然科学基金(52402377);北京自然科学基金(9234025);中国建设教育委员会项目(2023090)。

Anomaly Group Detection in Public Transit Based on Spatio-temporal Dynamic Hypergraph Clustering of Behavior Patterns

ZHAO Xia1, LI Zhihong*1, LIU Jianfeng2, YANG Jing1, WU Menglin1, QIN Yimeng1   

  1. 1. General Aviation Beijing Laboratory, Beijing University of Civil Engineering and Architecture, Beijing 102616, China; 2. Beijing Urban Construction Transport Planning & Design Institute Co Limited, Beijing 100050, China
  • Received:2024-12-18 Revised:2025-01-15 Accepted:2025-02-11 Online:2025-06-25 Published:2025-06-20
  • Supported by:
    National Natural Science Foundation of China (52402377);Beijing Natural Science Foundation (9234025);China Association of Construction Education (2023090)。

摘要: 针对现有异常团体检测研究忽略刻画个体隐行为模式、邻域团体隐行为模式以及行为模式时序变化特性的现状,本文提出一个时空动态超图聚类(Spatio-temporal Dynamic Hypergraph Clustering, STDHC)模型。先提取个体在连续时间切片的出行特征矩阵序列,对应构建行为模式超图序列,刻画各时段下多个体的高阶关联特性;由此运用Transformer,从时间维度学习个体显性出行特征背后的隐行为模式;运用超图卷积网络,从空间维度学习邻域团体的隐行为模式;度量双向时间传播作用下的超图拓扑结构变化值,从时间变化维度捕捉个体行为模式的时序变化特性;利用注意力机制融合上述3类特征,更新超图卷积网络,实现团体的自动检测。将本文提出模型应用于公共交通扒窃团体的检测案例,通过系列对比、消融和鲁棒分析实验,证实能在连续时间步长下取得高于6种基线模型2%~6%的提升性能。研究成果可为智能检测公共交通场所异常团体和提升安全运营水平提供理论支撑。

关键词: 智能交通, 异常检测, 深度学习, 行为模式, 超图卷积网络

Abstract: Existing research on abnormal group detection overlooks the characterization of individuals' latent behavior patterns, latent behavior patterns within neighboring groups, and the temporal variations in behavior patterns. In this context, this paper proposes a Spatio-temporal Dynamic Hypergraph Clustering (STDHC) model to address the above limitations. The study first extracts sequences of travel feature matrices for individuals across continuous time slices, based on which corresponding sequences of behavior pattern hypergraphs are constructed, with an aim to depict high-order correlation characteristics of multiple individuals at various time periods. Subsequently, the Transformer is used to capture latent behavior patterns underlying individuals' explicit travel features from the temporal dimension. The hypergraph convolutional network is utilized to model high order correlations of latent behavior patterns within neighboring groups from the spatial dimension. Additionally, the changes in the hypergraph topology structure under the bidirectional temporal propagation are measured to understand the temporal variations in individuals' behavior patterns. These three types of features are integrated using an attention mechanism to update the hypergraph convolutional network, enabling automatic detection of associated groups. The proposed model is applied to the detection of pickpocket gangs in public transit. Through a series of comparison, ablation, and robustness analysis experiments, it is demonstrated that the model achieves a performance improvement of 2% to 6% over six baseline models. The research findings provide theoretical support for the intelligent detection of abnormal groups in public transit and enhance safety and operational efficiency.

Key words: intelligent transportation, anomaly detection, deep learning, behavior pattern, hypergraph convolutional network

中图分类号: