交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (3): 178-189.DOI: 10.16097/j.cnki.1009-6744.2025.03.016

• 智能交通系统与信息技术 • 上一篇    下一篇

客货混行异质交通流下高速公路专用道车流管理方法

程国柱*1,陈永胜1,孟凤威1,徐亮2   

  1. 1. 东北林业大学,土木与交通学院,哈尔滨150040;2.长春工程学院,土木工程学院,长春130012
  • 收稿日期:2025-01-08 修回日期:2025-02-24 接受日期:2025-02-28 出版日期:2025-06-25 发布日期:2025-06-20
  • 作者简介:程国柱(1977—),男,吉林长春人,教授,博士。
  • 基金资助:
    国家自然科学基金(52378433);中央高校基本科研业务费专项资金(2572023CT21)。

Traffic Flow Management Method of Freeway Dedicated Lane Under Car-truck Mixed Heterogeneous Traffic Flow

CHENG Guozhu*1, CHEN Yongsheng1, MENG Fengwei1, XU Liang2   

  1. 1. School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China;2. School of Civil Engineering, Changchun Institute of Technology, Changchun 130012, China
  • Received:2025-01-08 Revised:2025-02-24 Accepted:2025-02-28 Online:2025-06-25 Published:2025-06-20
  • Supported by:
    National Natural Science Foundation of China (52378433);Fundamental Research Funds for the Central Universities of Ministry of Education of China (2572023CT21)。

摘要: 在人工驾驶小客车与货车,以及智能网联小客车与货车混行的客货混行异质交通流条件下,设置智能网联车(Connected and Autonomous Vehicle, CAV)专用道能够有效避免不同类型车辆之间的相互干扰。本文针对高速公路CAV专用道的车流管理方法展开研究,分析不同类型车辆的空间分布特征,综合考虑CAV渗透率、货车混入率、CAV编队模式及编队规模等因素,给出基于马尔科夫链的客货混行异质交通流通行能力计算方法。然后,在高速公路CAV专用道设置条件下,计算CAV专用道和混行车道的通行能力,并从加权车道饱和度及车道饱和度均衡性两方面考虑,提出基于双目标优化的高速公路CAV专用道车流管理方法。通过案例分析验证了本文方法的合理性。研究表明:CAV渗透率、货车混入率、聚集因子和CAV编队对通行能力具有显著影响;在智能网联小客车(Connected and Autonomous Car, CAC)专用道设置条件下,当交通需求为6000veh·h-1,货车混入率为0.1,CAV渗透率达到0.6时,与优先为专用道分配CAV的车流管理方法相比,本文方法在加权车道饱和度及车道饱和度均衡性方面的表现更优。研究方法可为高速公路CAV专用道的优化部署及其车流管理提供理论支撑。

关键词: 交通工程, 车流管理, 马尔科夫链, 客货混行异质交通流, 智能网联车编队

Abstract: In a mixed heterogeneous traffic environment consisting of human-driven cars, trucks, and both types of connected and autonomous vehicles (CAVs), the implementation of CAV-dedicated lanes can effectively mitigate mutual interference among different vehicle types. This study investigates traffic flow management method specifically for freeway CAV-dedicated lanes. By analyzing the spatial distribution characteristics of various vehicle types, with considering factors such as the CAV penetration rate, truck mixed rate, CAV platoon mode, and platoon size, a Markov chain-based method is proposed to calculate the capacity of car truck mixed heterogeneous traffic flows. Subsequently, the traffic capacities of CAV-dedicated lanes and mixed lanes are calculated under the conditions of CAV dedicated-lane deployment. By considering weighted lane saturation and lane saturation balance, a bi objective optimization-based traffic flow management method for freeway CAV-dedicated lanes is developed. The validity of the proposed method is demonstrated through case studies. Results indicate that CAV penetration rate, truck mixed rate, aggregation factor, and CAV platoon significantly affect traffic capacity. Under connected and autonomous car (CAC) dedicated lane deployment conditions, with a traffic demand of 6000 veh·h-1, a truck mix ratio of 0.1, and a CAV penetration rate of 0.6, the proposed method outperforms the conventional approach of prioritizing CAV allocation to dedicated lanes in terms of both weighted lane saturation and lane saturation balance. This research provides theoretical support for the optimal deployment and traffic flow management of freeway CAV-dedicated lanes.

Key words: traffic engineering, traffic flow management, Markov chain, car-truck mixed heterogeneous traffic flow, connected and autonomous vehicle platoon

中图分类号: