交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (3): 232-245.DOI: 10.16097/j.cnki.1009-6744.2025.03.021

• 系统工程理论与方法 • 上一篇    下一篇

基于动态贝叶斯网络的地下道路行车风险评估

尚婷*a,b,郭明洋b,唐伯明b,徐钰婷b   

  1. 重庆交通大学,a.智能综合立体交通重庆市重点实验室;b.交通运输学院,重庆400074
  • 收稿日期:2024-11-25 修回日期:2024-12-22 接受日期:2025-01-02 出版日期:2025-06-25 发布日期:2025-06-21
  • 作者简介:尚婷(1983—),女,重庆人,副教授,博士。
  • 基金资助:
    重庆市研究生科研创新项目(CYS240480);教育部青年人文社会科学研究青年基金(22YJCZH143);重庆市自然科学基金(CSTB2023NSCQ-MSX0742)。

Risk Assessment of Underground Road Driving Based on Dynamic Bayesian Networks

SHANG Ting*a,b, GUO Mingyangb, TANG Bomingb, XU Yutingb   

  1. a. Chongqing Key Laboratory of Intelligent Integrated and Multidimensional Transportation System; b. School of Traffic & Transportation, Chongqing Jiaotong University, Chongqing 400074, China
  • Received:2024-11-25 Revised:2024-12-22 Accepted:2025-01-02 Online:2025-06-25 Published:2025-06-21
  • Supported by:
    Chongqing Postgraduate Research Innovation Project (CYS240480);Youth Foundation for Humanities and Social Science Research of Ministry of Education (22YJCZH143);Natural Science Foundation Project of Chongqing (CSTB2023NSCQ-MSX0742)。

摘要: 为探究地下道路不同交通标志信息密度下驾驶员行车风险动态演变规律,本文以驾驶员视觉负荷为表征指标,利用自然驾驶试验采集驾驶员眼动数据,基于动态贝叶斯网络理论构建驾驶员行车风险评价模型。基于香农信息熵量化交通标志信息量,构建考虑交通标志信息量呈现速率的交通标志信息密度模型。选取解放碑地下道路4种不同交通标志信息密度的路段开展实车试验,提取并分析不同路段的驾驶员视觉特性指标。引入动态贝叶斯网络理论动态概率预测及推理评估驾驶员行车风险,由诊断推理、敏感性分析和影响链分析得到影响驾驶员行车风险的关键风险因素。结果表明:驾驶员注视持续时间、水平/垂直扫视幅度、水平/垂直扫视速度及瞳孔面积变化速率与交通标志信息密度呈正相关,眨眼频率与交通标志信息密度呈负相关;驾驶员行车风险发生概率随时间呈动态变化,先上升,后趋于平缓,且随交通标志信息密度的增加,4个路段的风险概率分别稳定于22.6%,35.7%,40.1%和43.8%;驾驶员行车风险受注视状态等环节风险因素影响较大,包括注视持续时间、瞳孔面积变化速率和眨眼频率等关键风险因素。

关键词: 交通工程, 视觉负荷, 动态贝叶斯网络, 地下道路, 实车试验, 风险评估

Abstract: This study aims to investigate the dynamic evolution law of driver's driving risk in underground roads under different traffic sign information densities. Using the driver's visual load as a representative metric, eye movement data of drivers were collected through natural driving tests. A driving risk evaluation model was constructed based on dynamic Bayesian network theory. The traffic sign information density model was constructed based on Shannon entropy to quantify the information volume of traffic signs, considering the presentation rate of traffic sign information. Four underground roads with different traffic sign information densities in Liangma Square were selected for the in-vehicle experiment, and the driver's visual characteristics indicators were extracted and analyzed. The driver's driving risk was dynamically predicted and inferred by the dynamic Bayesian network theory, and the key risk factors affecting the driver's driving risk were obtained through diagnosis inference, sensitivity analysis and impact chain analysis. The results show that the driver's fixation duration, horizontal/vertical saccadic amplitude, horizontal/vertical saccadic speed, and pupil area change rate are positively correlated with traffic sign information density, while the blinking frequency is negatively correlated; the driver's driving risk occurrence probability changes dynamically over time, first increasing and then becoming stable, and the risk probability of the four sections stabilizes at 22.6%, 35.7%, 40.1%, and 43.8% respectively as the traffic sign information density increases; the driver's driving risk is greatly affected by the link risk factors in the linkage process, including the key risk factors of fixation duration, pupil area change rate, and blinking frequency.

Key words: traffic engineering, visual load, dynamic Bayesian network, underground loop, real vehicle test, risk assessment

中图分类号: