交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (3): 358-371.DOI: 10.16097/j.cnki.1009-6744.2025.03.032

• 工程应用与案例分析 • 上一篇    下一篇

高速公路出口衔接城市路段交通风险时空动态识别研究

胡立伟*,杨灿,周泽禹,潘江雄,陈家乐,龚麒,马思月   

  1. 昆明理工大学,交通工程学院,昆明650500
  • 收稿日期:2025-01-09 修回日期:2025-03-03 接受日期:2025-03-13 出版日期:2025-06-25 发布日期:2025-06-22
  • 作者简介:胡立伟(1978—),男,山东潍坊人,教授。
  • 基金资助:
    国家自然科学基金(42277476);云南省基础研究专项(202401AS070065)。

Spatial-temporal Dynamic Identification of Traffic Risks in Urban Road Segments Connected with Freeway Exits

HU Liwei*, YANG Can, ZHOU Zeyu, PAN Jiangxiong, CHEN Jiale, GONG Qi, MA Siyue   

  1. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2025-01-09 Revised:2025-03-03 Accepted:2025-03-13 Online:2025-06-25 Published:2025-06-22
  • Supported by:
    National Natural Science Foundation of China (42277476); Yunnan Fundamental Research Projects (202401AS070065)。

摘要: 为更加准确地对高速公路出口衔接城市路段的交通风险进行识别和评估,本文提出一种综合考虑风险接近水平(RNL)和风险严重程度(RSL)的换道时空风险指数(TRCI)。首先利用轨迹数据分析路段换道车辆的轨迹特性、换道位置特性和换道影响因素,结果表明,车辆换道相对位置集中分布在0.1~0.2和0.4~0.6区间;然后提出换道碰撞时间(LCTTC),将LCTTC与碰撞余量(MTC)映射得到RNL和RSL以描述换道时空风险特性,利用邓氏灰色关联度方法进行权重分析得到换道时空风险指数TRCI,使用累计频率法确定严重、较严重、一般与轻微冲突的阈值分别为0.30、0.51、0.67,对比TRCI与碰撞时间(TTC)、跟车时距(GAP)对换道冲突风险的识别情况;最后将高速公路出口衔接城市路段划分为32个区段和128个区块,进行换道冲突分布特性分析及风险等级评定。结果表明,车辆换道时空风险指数TRCI的风险有效识别率平均较TTC提升85.10%,平均较GAP提升49.75%;基于XGBoost算法构建的高速公路出口衔接城市路段车辆换道冲突严重性预测模型的性能更优,F1分数较梯度提升决策树模型(GBDT)和随机森林模型(RF)分别提升了11.28%和1.40%。研究路段中区段3~区段5、区段14~区段18以及区段21~区段23的冲突点最密集,区段4、区段5、区段15~区段18处于高风险状态,说明出口匝道、导向车道和地面道路的合流点是换道冲突风险最高的区域。本文可为高速公路出口衔接城市路段的交通运行安全分析及管理提供理论支撑。

关键词: 交通工程, 换道风险评估, 换道时空风险指数, 高速公路出口衔接城市路段, 风险等级评定

Abstract: To accurately identify and assess the traffic risk of urban road sections connected to freeway exits, this paper proposes a lane-changing spatial-temporal risk index TRCI (Transitive Risk Coupling Index) that integrates risk proximity level (RNL) and risk severity level (RSL). First, vehicle trajectory data are used to analyze the trajectory characteristics of lane-changing vehicles on road segments, lane-changing positional properties and lane-changing influencing factors. The results show that the relative position of vehicle lane-changing is concentrated in the intervals of 0.1 to 0.2 and 0.4 to 0.6. The lane-changing collision time (LCTTC) is introduced and integrated to the MTC(Margin to Collision) to get the RNL and RSL to characterize the spatial temporal risk characteristics of lane-changing. The Deng's grey correlation method is used to obtain the spatial-temporal risk index of lane-changing (TRCI). The cumulative frequency method is used to determine the thresholds for serious, serious, general, and minor conflicts, respectively. The cumulative frequency method is used to determine the thresholds of serious, more serious, general and minor conflicts as 0.30, 0.51 and 0.67 respectively, and comparing TRCI with TTC and GAP for the identification of the risk of lane-changing conflicts. The freeway exits connecting with the urban road sections are divided into 32 segments and 128 blocks, and lane-changing conflicts are analyzed in terms of their distributional characteristics and risk level assessment. The results show that the effective identification rate of the risk of vehicle lane-changing spatio-temporal risk index TRCI is improved by 85.10% on average compared with that of TTC, and 49.75% on average compared with that of GAP. The performance of the vehicle lane change conflict severity prediction model constructed based on the XGBoost algorithm for freeway exits bridging urban roadway segments performs better than traditional methods. The F1 scores are improved by respectively 11.28% and 1.40% compared with the GBDT(Gradient Boosting Decision Tree) and RF(Random Forest) models. The conflict points in the study section are most intensive in the sections of 3 to 5, 14 to 18 and 21 to 23. The sections of 4 to 5 and 15 to 18 are in high-risk status, which indicates that the exit ramps, guided lanes and surface roadway merging points are the areas with the highest risk of lane change conflicts. The study provides theoretical support for the analysis and management of traffic safety in the urban road section connected with the freeway exit.

Key words: traffic engineering, lane change risk assessment, transitive risk coupling index, freeway exits connecting to urban roadway segments, risk level assessment

中图分类号: