交通运输系统工程与信息 ›› 2019, Vol. 19 ›› Issue (2): 238-246.

• 系统工程理论与方法 • 上一篇    下一篇

基于出租车GPS大数据的城市热点出行路段识别方法

曲昭伟,王鑫,宋现敏*,夏英集,袁咪莉   

  1. 吉林大学 交通学院,长春 130022
  • 收稿日期:2018-09-10 修回日期:2018-12-13 出版日期:2019-04-25 发布日期:2019-04-25
  • 作者简介:曲昭伟(1962-),男,吉林长春人,教授,博士.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(51278220);吉林省教育厅“十三五”科学技术项目/ Jilin Provincial Department of Education“13th Five-year”Science and Technology Project (JJKH20190153KJ).

Urban Hotspot Travel Section Identification Method Based on Taxi GPS Large Data

QU Zhao-wei, WANG Xin, SONG Xian-min, XIA Ying-ji, YUAN Mi-li   

  1. School of Transportation, Jilin University, Changchun 130022, China
  • Received:2018-09-10 Revised:2018-12-13 Online:2019-04-25 Published:2019-04-25

摘要:

连续两个出租车 GPS定位点之间的时空间隔使得乘客上下车的位置必然介于一个线性区间内,据此提出轨迹线密度方法,用于在位置界限模糊的热点出行区域进一步搜索热点路段.利用成都市出租车 GPS数据,借助核密度估计分析出租车上下客位置的时空特性;基于轨迹线密度方法,计算了成都市春熙路商圈的路网密度值,划分路段热点强度,识别出了热点路段的位置,结合实际的出行需求分布完成方法有效性的验证.结果表明,本文所采用的方法能够有效识别出行需求旺盛的城市热点路段,不仅可以为出租车司机寻找客源提供重要的参考,还能够在交通相关部门选择出租车停靠站的位置时提供数据支持.

关键词: 城市交通, 轨迹线密度, 核密度分析, 城市热点路段, GPS大数据, 出租车停靠站

Abstract:

Due to the spatio- temporal interval between two consecutive taxi GPS points, the location where passengers get on or off the taxi is in a linear range. A method of trajectory density was proposed for further searching hotspots sections in the hotspots area where the hotspots location is fuzzy. Utilizing taxi GPS data of Chengdu, the spatio- temporal characteristics of the pick- up and drop- off location were analyzed by means of kernel density method; Based on the trajectory density method, the density of road network in Chunxi commercial district of Chengdu was calculated, the hotspots intensity of the section was divided, and the location of hotspots section was identified. The validity of the proposed method is verified by the actual travel demand distribution. The result shows that our method can effectively identify the hotspots sections where travel demand is strong. It can not only provide important reference for taxi drivers to find customers, but also give data support for traffic related departments to locate reasonable taxi stops.

Key words: urban traffic, trajectory density, kernel density estimation, urban hotspot section, GPS big data, taxi stands

中图分类号: