交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (3): 204-214.DOI: 10.16097/j.cnki.1009-6744.2025.03.018

• 系统工程理论与方法 • 上一篇    下一篇

随机需求下机非车道分配与复用优化研究

时玉琦1,杨晓光*1,马成元2   

  1. 1. 同济大学,道路与交通工程教育部重点实验室,上海201804;2. 威斯康星大学麦迪逊分校,土木与环境工程系,麦迪逊53706,美国
  • 收稿日期:2025-02-10 修回日期:2025-03-21 接受日期:2025-03-27 出版日期:2025-06-25 发布日期:2025-06-21
  • 作者简介:时玉琦(1995—),女,江苏徐州人,博士生。
  • 基金资助:
    国家自然科学基金(52472350)。

Integrated Optimization of Allocation and Reuse of Motorized and Non-motorized Lane at Isolated Intersections Under Stochastic Demand

SHI Yuqi1, YANG Xiaoguang*1, MA Chengyuan2   

  1. 1. The Key Laboratory of Road and Traffic Engineering, Ministry of Education, Tongji University, Shanghai 201804, China; 2. Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison 53706, USA
  • Received:2025-02-10 Revised:2025-03-21 Accepted:2025-03-27 Online:2025-06-25 Published:2025-06-21
  • Supported by:
    National Natural Science Foundation of China (52472350)。

摘要: 根据交通需求的动态变化,进行城市道路交叉口通行时空资源的协同优化,是提升其通行效能的重要措施。本文针对机动车与非机动车交通时变的错位特征,提出基于双层随机规划的车道管理方法,实现车道机非类型、车道转向功能与信号相位配时的动态协同优化。首先,突破以机动车道为主的空间优化范式,将非机动车道纳入统一路权分配体系,构建多模式交通主体道路资源的分配框架;其次,针对混合交通流时空需求的波动特性,提出车道机非复用策略,允许非机动车在交通需求峰值时段临时使用部分机动车道空间;随后,建立车道转向功能与信号相位配时的动态优化方法,实现时空资源协同优化。数值模拟结果表明:相较于传统静态车道管理模式,本文方法可使交叉口通行能力提升9.90%;相比非复用车道管理方案,其通行效率增益达3.27%。参数敏感性分析显示:电动自行车交通占比和非机动车速度异质性与时空资源优化效率呈现显著正相关性;路权宽度每扩展0.5m,可产生6%的通行能力边际效益。本文提出的资源柔性配置和功能动态适配的交叉口时空资源管理理论成果,有效适应了混合交通需求的异质分布与随机波动特征,显著提升了交叉口时空资源利用效率。

关键词: 交通工程, 车道复用, 车道分配, 混合交通流, 随机需求

Abstract: Adapting to stochastic traffic demand and optimizing the spatiotemporal allocation of intersection resources coordinately is a crucial strategy for enhancing traffic efficiency. This study addresses the temporal misalignment characteristics of motorized and non-motorized traffic and proposes a bi-level stochastic programming-based lane management approach to achieve dynamic coordination among lane type, lane marking, and signal timing. First, this study moves beyond the traditional paradigm of space optimization centered on motorized lanes by incorporating non-motorized lanes into a unified lane allocation system. Second, considering the fluctuating spatiotemporal demands of mixed traffic flows, a lane-reuse strategy is introduced, allowing non- motorized vehicles to temporarily utilize certain motorized lane spaces during certain periods. Furthermore, an integrated optimization model for lane markings and signal timing is established to achieve the coordinated optimization of spatiotemporal resources. Numerical simulation results indicate that, compared to traditional static lane management models, the proposed method enhances intersection capacity by 9.90%. Moreover, when compared to non-reuse lane management strategies, capacity gains reach 3.27%. Sensitivity analysis reveals a significant positive correlation between the proportion of electric bicycle traffic, the speed heterogeneity of non-motorized vehicles, and the efficiency of spatiotemporal resource optimization. Every 0.5 m expansion in road width contributes to a 6% marginal improvement in intersection capacity. The theoretical framework proposed in this study, which integrates flexible resource allocation and dynamic marking adaptation, effectively accommodates the heterogeneous distribution and stochastic fluctuations of mixed traffic demand, significantly improving the utilization efficiency of spatiotemporal resources at urban intersections.

Key words: traffic engineering, lane reuse, lane allocation, mixed-traffic flow, stochastic demand

中图分类号: