交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (5): 280-290.DOI: 10.16097/j.cnki.1009-6744.2025.05.025

• 系统工程理论与方法 • 上一篇    下一篇

面向集中供给与稀疏需求场景的网约车调度优化算法

王江锋*1,2,宋之凡1,李云飞1,齐崇楷1,闫学东1,3,李青山4   

  1. 1. 北京交通大学,交通运输学院,北京100044;2.北京交通大学,唐山研究院,河北唐山063000;3. 西南交通大学,交通运输与物流学院,成都611756;4.中国雄安集团交通有限公司,河北雄安070001
  • 收稿日期:2025-06-05 修回日期:2025-08-02 接受日期:2025-08-21 出版日期:2025-10-25 发布日期:2025-10-25
  • 作者简介:王江锋(1976— ),男,河北保定人,教授,博士。
  • 基金资助:
    河北省创新能力提升计划项目(244X0801D);河北省省级科技计划项目(236Z0802G)。

Optimization Algorithm for Ride-hailing Dispatch Under Concentrated Supply and Sparse Demand

WANG Jiangfeng*1,2, SONG Zhifan1, LI Yunfei1, QI Chongkai1, YAN Xuedong1,3, LI Qingshan4   

  1. 1. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China; 2. Tangshan Research Institute, Beijing Jiaotong University, Tangshan 063000, Hebei, China; 3. School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 611756, China; 4. China Xiong'an Group Transportation Co Ltd, Xiong'an 070001, Hebei, China
  • Received:2025-06-05 Revised:2025-08-02 Accepted:2025-08-21 Online:2025-10-25 Published:2025-10-25
  • Supported by:
    The Project of Hebei Province Innovation Capacity Enhancement Plan (244X0801D);Hebei Provincial Science and Technology Program Project (236Z0802G)。

摘要: 针对部分新兴城区网约车服务在空间分布上存在“集中供给和稀疏需求”的结构性失衡现象,本文引入激励策略优化网约车调度决策,解决供需分布的空间错配。基于强化学习方法提出一种嵌入激励策略的网约车调度优化算法,包括调度环境构建、可行决策筛选、激励策略嵌入和调度决策优化这4个模块。具体而言,基于Markov决策过程构建涵盖订单匹配、空驶调度和充电管理等任务的调度环境,通过订单抽成下调与优先派单保障机制设计“直接经济刺激”“间接规则优化”相结合的联合激励策略,提出以平台收益最大化为目标的Actor-Critic调度优化算法。以雄安新区为例进行实证分析,结果表明,本文提出的算法能够有效提升“稀疏需求”订单的服务率。在网约车投放规模固定的情况下,分别评估订单抽成下调,优先派单保障以及联合激励策略,结果显示,在平台收益不下降且全局订单服务率有所提升的前提下,“稀疏需求”订单服务率分别提高了24.70%、2.53%和26.09%。随着网约车投放规模增加,当投放数量达120辆时,“稀疏需求”订单服务率和全局订单服务率分别达到61.20%和81.55%。对平台抽成比例与优先派单保障期的敏感性分析进一步表明,当抽成比例设置为24%,保障期设置为4个调度周期时,系统在全局订单服务率与平台收益之间实现了较优平衡。

关键词: 城市交通, 激励策略, 强化学习, 网约车, 调度算法

Abstract: This study addresses the structural imbalance of “concentrated supply and sparse demand” in ride-hailing services across emerging urban areas by introducing incentive strategies to optimize dispatch decisions and alleviate spatial mismatches between supply and demand. A reinforcement learning-based dispatch optimization algorithm is proposed, integrating incentive mechanisms into four key modules: environment construction, feasible decision selection, incentive embedding, and policy optimization. Specifically, a Markov Decision Process-based environment is developed to model tasks such as order matching, idle vehicle repositioning, and charging management. A joint incentive strategy combining direct financial incentives (via reduced platform commission) and indirect regulatory adjustments (via prioritized dispatch guarantees) is designed, and an Actor-Critic algorithm is used to maximize platform revenue. Empirical analysis using data from Xiong’an New Area in Hebei Province demonstrates that the proposed method significantly improves the service rate of sparse-demand orders with sparse demand. Under fixed fleet size, the service rates of sparse-demand orders respectively increased by 24.70%, 2.53%, and 26.09% through commission reduction, prioritized dispatch, and joint incentives, while maintaining or increasing overall service rate and platform revenue. As the ride-hailing vehicle fleet expands, the sparse-demand and overall order fulfillment rates reach 61.20% and 81.55% respectively, when the fleet size reaches 120 vehicles. Sensitivity analysis further indicates that a 24% commission rate and a 4-period dispatch guarantee yield a favorable balance between platform revenue and global service performance.

Key words: urban traffic, incentive strategies, reinforcement learning, ride-hailing, dispatch algorithm

中图分类号: