车辆定位广泛使用基于视觉的定位方法,针对前视图像或侧视图像易受到周围环境的影响且定位过程中需要遍历匹配地图图像导致耗时较长的问题,本文提出一种基于俯视路面图像的表征模型——路面指纹.路面指纹包含GPS(Global Positioning System),路面特征和图像特征点.该模型通过卷积神经网络(Convolutional Neural Network, CNN)结合连通区域识别待定位图像的路面特征信息,利用路面特征信息对GPS初定位筛选的地图节点进一步筛选从而提高定位效率.分别在路面特征信息密集和稀疏的路段下进行实验,实验结果表明,通过引入路面指纹使定位耗时减少20.3%,平均定位误差为47.4 mm.该方法能提高定位效率并实现高精度车辆定位.